|
import tensorflow as tf |
|
from tensorflow.keras import layers, models |
|
|
|
def create_model(): |
|
model = models.Sequential() |
|
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(64, 64, 3))) |
|
model.add(layers.MaxPooling2D((2, 2))) |
|
model.add(layers.Conv2D(64, (3, 3), activation='relu')) |
|
model.add(layers.MaxPooling2D((2, 2))) |
|
model.add(layers.Conv2D(64, (3, 3), activation='relu')) |
|
model.add(layers.Flatten()) |
|
model.add(layers.Dense(64, activation='relu')) |
|
model.add(layers.Dense(10, activation='softmax')) |
|
model.compile(optimizer='adam', |
|
loss='sparse_categorical_crossentropy', |
|
metrics=['accuracy']) |
|
return model |