|
import pandas as pd |
|
|
|
from autogluon.tabular import TabularPredictor |
|
|
|
|
|
if __name__ == '__main__': |
|
train_data = pd.read_csv('https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv') |
|
subsample_size = 5000 |
|
if subsample_size is not None and subsample_size < len(train_data): |
|
train_data = train_data.sample(n=subsample_size, random_state=0) |
|
test_data = pd.read_csv('https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv') |
|
|
|
tabpfnmix_default = { |
|
"model_path_classifier": "autogluon/tabpfn-mix-1.0-classifier", |
|
"model_path_regressor": "autogluon/tabpfn-mix-1.0-regressor", |
|
"n_ensembles": 1, |
|
"max_epochs": 30, |
|
} |
|
|
|
hyperparameters = { |
|
"TABPFNMIX": [ |
|
tabpfnmix_default, |
|
], |
|
} |
|
|
|
label = "class" |
|
|
|
predictor = TabularPredictor(label=label) |
|
predictor = predictor.fit( |
|
train_data=train_data, |
|
hyperparameters=hyperparameters, |
|
verbosity=3, |
|
presets="best", |
|
num_cpus=2, |
|
) |
|
|
|
predictor.leaderboard(test_data, display=True) |