Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,114 +1,334 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import torch
|
7 |
-
import
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
}
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
# Process the uploaded image
|
55 |
-
image_pil = Image.open(image)
|
56 |
-
image_tensor = selected_processor(image_pil, return_tensors="pt")['pixel_values'].cuda()
|
57 |
-
|
58 |
-
if not image_tensor.shape[0] == 1:
|
59 |
-
image_tensor = image_tensor.squeeze(0)
|
60 |
-
|
61 |
-
batch = {"image": image_tensor}
|
62 |
-
|
63 |
-
# Generate SVG
|
64 |
-
raw_svg = selected_model.generate_im2svg(batch, max_length=4000)[0]
|
65 |
-
svg, raster_image = process_and_rasterize_svg(raw_svg)
|
66 |
-
|
67 |
-
# Convert SVG string to bytes for download
|
68 |
-
svg_bytes = io.BytesIO(svg.encode('utf-8'))
|
69 |
-
|
70 |
-
return raster_image, svg_bytes, f"Conversion successful using {model_choice} model!"
|
71 |
-
except Exception as e:
|
72 |
-
return None, None, f"Error: {str(e)}"
|
73 |
-
|
74 |
-
# Create Blocks interface
|
75 |
-
with gr.Blocks(title="StarVector") as demo:
|
76 |
-
gr.Markdown("# StarVector")
|
77 |
-
gr.Markdown("Upload an image to convert it to SVG format using StarVector model")
|
78 |
-
|
79 |
-
with gr.Row():
|
80 |
-
with gr.Column(scale=1):
|
81 |
-
# Input section
|
82 |
-
input_image = gr.Image(type="filepath", label="Upload Image")
|
83 |
-
if USE_BOTH_MODELS:
|
84 |
-
model_choice = gr.Radio(
|
85 |
-
choices=["8b", "1b"],
|
86 |
-
value="8b",
|
87 |
-
label="Select Model",
|
88 |
-
info="Choose between 8b (larger) and 1b (smaller) models"
|
89 |
-
)
|
90 |
-
convert_btn = gr.Button("Convert to SVG")
|
91 |
-
example = gr.Examples(
|
92 |
-
examples=[["assets/examples/sample-18.png"]],
|
93 |
-
inputs=input_image
|
94 |
-
)
|
95 |
-
|
96 |
-
with gr.Column(scale=1):
|
97 |
-
# Output section
|
98 |
-
output_preview = gr.Image(type="pil", label="Rasterized SVG Preview")
|
99 |
-
output_file = gr.File(label="Download SVG")
|
100 |
-
status = gr.Textbox(label="Status")
|
101 |
-
|
102 |
-
# Connect button click to conversion function
|
103 |
-
inputs = [input_image]
|
104 |
-
if USE_BOTH_MODELS:
|
105 |
-
inputs.append(model_choice)
|
106 |
-
|
107 |
-
convert_btn.click(
|
108 |
-
fn=convert_to_svg,
|
109 |
-
inputs=inputs,
|
110 |
-
outputs=[output_preview, output_file, status]
|
111 |
)
|
112 |
|
113 |
-
#
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
gradio_tts_app.py
|
4 |
+
|
5 |
+
Run:
|
6 |
+
python gradio_tts_app.py
|
7 |
+
|
8 |
+
Then open the printed local or public URL in your browser.
|
9 |
+
"""
|
10 |
+
|
11 |
+
import os
|
12 |
+
import random
|
13 |
+
import numpy as np
|
14 |
import torch
|
15 |
+
import torchaudio
|
16 |
+
import whisper
|
17 |
+
import gradio as gr
|
18 |
+
from argparse import Namespace
|
19 |
+
|
20 |
+
# ---------------------------------------------------------------------
|
21 |
+
# The following imports assume your local project structure:
|
22 |
+
# data/tokenizer.py
|
23 |
+
# models/voice_star.py
|
24 |
+
# inference_tts_utils.py
|
25 |
+
# Adjust if needed.
|
26 |
+
# ---------------------------------------------------------------------
|
27 |
+
from data.tokenizer import AudioTokenizer, TextTokenizer
|
28 |
+
from models import voice_star
|
29 |
+
from inference_tts_utils import inference_one_sample
|
30 |
+
|
31 |
+
|
32 |
+
############################################################
|
33 |
+
# Utility Functions
|
34 |
+
############################################################
|
35 |
+
|
36 |
+
def seed_everything(seed=1):
|
37 |
+
os.environ['PYTHONHASHSEED'] = str(seed)
|
38 |
+
random.seed(seed)
|
39 |
+
np.random.seed(seed)
|
40 |
+
torch.manual_seed(seed)
|
41 |
+
torch.cuda.manual_seed(seed)
|
42 |
+
torch.backends.cudnn.benchmark = False
|
43 |
+
torch.backends.cudnn.deterministic = True
|
44 |
+
|
45 |
+
|
46 |
+
def estimate_duration(ref_audio_path, text):
|
47 |
+
"""
|
48 |
+
Estimate duration based on seconds per character from the reference audio.
|
49 |
+
"""
|
50 |
+
info = torchaudio.info(ref_audio_path)
|
51 |
+
audio_duration = info.num_frames / info.sample_rate
|
52 |
+
length_text = max(len(text), 1)
|
53 |
+
spc = audio_duration / length_text # seconds per character
|
54 |
+
return len(text) * spc
|
55 |
+
|
56 |
+
|
57 |
+
############################################################
|
58 |
+
# Main Inference Function
|
59 |
+
############################################################
|
60 |
+
|
61 |
+
def run_inference(
|
62 |
+
# User-adjustable parameters (no "# do not change" in snippet)
|
63 |
+
reference_speech="./demo/5895_34622_000026_000002.wav",
|
64 |
+
target_text="VoiceStar is a very interesting model, it's duration controllable and can extrapolate",
|
65 |
+
model_name="VoiceStar_840M_40s",
|
66 |
+
model_root="./pretrained",
|
67 |
+
reference_text=None, # optional
|
68 |
+
target_duration=None, # optional
|
69 |
+
top_k=10, # can try 10, 20, 30, 40
|
70 |
+
temperature=1,
|
71 |
+
kvcache=1, # if OOM, set to 0
|
72 |
+
repeat_prompt=1, # use higher to improve speaker similarity
|
73 |
+
stop_repetition=3, # snippet says "will not use it" but not "do not change"
|
74 |
+
seed=1,
|
75 |
+
output_dir="./generated_tts",
|
76 |
+
|
77 |
+
# Non-adjustable parameters (based on snippet instructions)
|
78 |
+
codec_audio_sr=16000, # do not change
|
79 |
+
codec_sr=50, # do not change
|
80 |
+
top_p=1, # do not change
|
81 |
+
min_p=1, # do not change
|
82 |
+
silence_tokens=None, # do not change it
|
83 |
+
multi_trial=None, # do not change it
|
84 |
+
sample_batch_size=1, # do not change
|
85 |
+
cut_off_sec=100, # do not adjust
|
86 |
+
):
|
87 |
+
"""
|
88 |
+
Inference script for VoiceStar TTS.
|
89 |
+
"""
|
90 |
+
# 1. Set seed
|
91 |
+
seed_everything(seed)
|
92 |
+
|
93 |
+
# 2. Load model checkpoint
|
94 |
+
torch.serialization.add_safe_globals([Namespace])
|
95 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
96 |
+
ckpt_fn = os.path.join(model_root, model_name + ".pth")
|
97 |
+
if not os.path.exists(ckpt_fn):
|
98 |
+
# use wget to download
|
99 |
+
print(f"[Info] Downloading {model_name} checkpoint...")
|
100 |
+
os.system(f"wget https://huggingface.co/pyp1/VoiceStar/resolve/main/{model_name}.pth?download=true -O {ckpt_fn}")
|
101 |
+
bundle = torch.load(ckpt_fn, map_location=device, weights_only=True)
|
102 |
+
args = bundle["args"]
|
103 |
+
phn2num = bundle["phn2num"]
|
104 |
+
|
105 |
+
model = voice_star.VoiceStar(args)
|
106 |
+
model.load_state_dict(bundle["model"])
|
107 |
+
model.to(device)
|
108 |
+
model.eval()
|
109 |
+
|
110 |
+
# 3. If reference_text not provided, transcribe reference speech with Whisper
|
111 |
+
if reference_text is None:
|
112 |
+
print("[Info] No reference_text provided. Transcribing reference_speech with Whisper (large-v3-turbo).")
|
113 |
+
wh_model = whisper.load_model("large-v3-turbo")
|
114 |
+
result = wh_model.transcribe(reference_speech)
|
115 |
+
prefix_transcript = result["text"]
|
116 |
+
print(f"[Info] Whisper transcribed text: {prefix_transcript}")
|
117 |
+
else:
|
118 |
+
prefix_transcript = reference_text
|
119 |
+
|
120 |
+
# 4. If target_duration not provided, estimate from reference speech + target_text
|
121 |
+
if target_duration is None:
|
122 |
+
target_generation_length = estimate_duration(reference_speech, target_text)
|
123 |
+
print(f"[Info] target_duration not provided, estimated as {target_generation_length:.2f}s. Provide --target_duration if needed.")
|
124 |
+
else:
|
125 |
+
target_generation_length = float(target_duration)
|
126 |
+
|
127 |
+
# 5. Prepare signature from snippet
|
128 |
+
if args.n_codebooks == 4:
|
129 |
+
signature = "./pretrained/encodec_6f79c6a8.th"
|
130 |
+
elif args.n_codebooks == 8:
|
131 |
+
signature = "./pretrained/encodec_8cb1024_giga.th"
|
132 |
+
else:
|
133 |
+
signature = "./pretrained/encodec_6f79c6a8.th"
|
134 |
+
|
135 |
+
if silence_tokens is None:
|
136 |
+
silence_tokens = []
|
137 |
+
|
138 |
+
if multi_trial is None:
|
139 |
+
multi_trial = []
|
140 |
+
|
141 |
+
delay_pattern_increment = args.n_codebooks + 1 # from snippet
|
142 |
+
|
143 |
+
info = torchaudio.info(reference_speech)
|
144 |
+
prompt_end_frame = int(cut_off_sec * info.sample_rate)
|
145 |
+
|
146 |
+
# 6. Tokenizers
|
147 |
+
audio_tokenizer = AudioTokenizer(signature=signature)
|
148 |
+
text_tokenizer = TextTokenizer(backend="espeak")
|
149 |
+
|
150 |
+
# 7. decode_config
|
151 |
+
decode_config = {
|
152 |
+
"top_k": top_k,
|
153 |
+
"top_p": top_p,
|
154 |
+
"min_p": min_p,
|
155 |
+
"temperature": temperature,
|
156 |
+
"stop_repetition": stop_repetition,
|
157 |
+
"kvcache": kvcache,
|
158 |
+
"codec_audio_sr": codec_audio_sr,
|
159 |
+
"codec_sr": codec_sr,
|
160 |
+
"silence_tokens": silence_tokens,
|
161 |
+
"sample_batch_size": sample_batch_size,
|
162 |
}
|
163 |
+
|
164 |
+
# 8. Run inference
|
165 |
+
print("[Info] Running TTS inference...")
|
166 |
+
concated_audio, gen_audio = inference_one_sample(
|
167 |
+
model, args, phn2num, text_tokenizer, audio_tokenizer,
|
168 |
+
reference_speech, target_text,
|
169 |
+
device, decode_config,
|
170 |
+
prompt_end_frame=prompt_end_frame,
|
171 |
+
target_generation_length=target_generation_length,
|
172 |
+
delay_pattern_increment=delay_pattern_increment,
|
173 |
+
prefix_transcript=prefix_transcript,
|
174 |
+
multi_trial=multi_trial,
|
175 |
+
repeat_prompt=repeat_prompt,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
)
|
177 |
|
178 |
+
# The model returns a list of waveforms, pick the first
|
179 |
+
concated_audio, gen_audio = concated_audio[0].cpu(), gen_audio[0].cpu()
|
180 |
+
|
181 |
+
# 9. Save generated audio
|
182 |
+
os.makedirs(output_dir, exist_ok=True)
|
183 |
+
out_filename = "generated.wav"
|
184 |
+
out_path = os.path.join(output_dir, out_filename)
|
185 |
+
torchaudio.save(out_path, gen_audio, codec_audio_sr)
|
186 |
+
|
187 |
+
print(f"[Success] Generated audio saved to {out_path}")
|
188 |
+
return out_path # Return the path for Gradio to load
|
189 |
+
|
190 |
+
|
191 |
+
############################
|
192 |
+
# Transcription function
|
193 |
+
############################
|
194 |
+
|
195 |
+
def transcribe_audio(reference_speech):
|
196 |
+
"""
|
197 |
+
Transcribe uploaded reference audio with Whisper, return text.
|
198 |
+
If no file, return empty string.
|
199 |
+
"""
|
200 |
+
if reference_speech is None:
|
201 |
+
return ""
|
202 |
+
audio_path = reference_speech # Because type="filepath"
|
203 |
+
|
204 |
+
if not os.path.exists(audio_path):
|
205 |
+
return "File not found."
|
206 |
+
|
207 |
+
print("[Info] Transcribing with Whisper...")
|
208 |
+
model = whisper.load_model("medium") # or "large-v2" etc.
|
209 |
+
result = model.transcribe(audio_path)
|
210 |
+
return result["text"]
|
211 |
+
|
212 |
+
############################
|
213 |
+
# Gradio UI
|
214 |
+
############################
|
215 |
+
|
216 |
+
def main():
|
217 |
+
with gr.Blocks() as demo:
|
218 |
+
gr.Markdown("## VoiceStar TTS with Editable Reference Text")
|
219 |
+
|
220 |
+
with gr.Row():
|
221 |
+
reference_speech_input = gr.Audio(
|
222 |
+
label="Reference Speech",
|
223 |
+
type="filepath",
|
224 |
+
elem_id="ref_speech"
|
225 |
+
)
|
226 |
+
transcribe_button = gr.Button("Transcribe")
|
227 |
+
|
228 |
+
# The transcribed text appears here and can be edited
|
229 |
+
reference_text_box = gr.Textbox(
|
230 |
+
label="Reference Text (Editable)",
|
231 |
+
placeholder="Click 'Transcribe' to auto-fill from reference speech...",
|
232 |
+
lines=2
|
233 |
+
)
|
234 |
+
|
235 |
+
target_text_box = gr.Textbox(
|
236 |
+
label="Target Text",
|
237 |
+
value="VoiceStar is a very interesting model, it's duration controllable and can extrapolate to unseen duration.",
|
238 |
+
lines=3
|
239 |
+
)
|
240 |
+
|
241 |
+
model_name_box = gr.Textbox(
|
242 |
+
label="Model Name",
|
243 |
+
value="VoiceStar_840M_40s"
|
244 |
+
)
|
245 |
+
|
246 |
+
model_root_box = gr.Textbox(
|
247 |
+
label="Model Root Directory",
|
248 |
+
value="/data1/scratch/pyp/BoostedVoiceEditor/runs"
|
249 |
+
)
|
250 |
+
|
251 |
+
reference_duration_box = gr.Textbox(
|
252 |
+
label="Target Duration (Optional)",
|
253 |
+
placeholder="Leave empty for auto-estimate."
|
254 |
+
)
|
255 |
+
|
256 |
+
top_k_box = gr.Number(label="top_k", value=10)
|
257 |
+
temperature_box = gr.Number(label="temperature", value=1.0)
|
258 |
+
kvcache_box = gr.Number(label="kvcache (1 or 0)", value=1)
|
259 |
+
repeat_prompt_box = gr.Number(label="repeat_prompt", value=1)
|
260 |
+
stop_repetition_box = gr.Number(label="stop_repetition", value=3)
|
261 |
+
seed_box = gr.Number(label="Random Seed", value=1)
|
262 |
+
output_dir_box = gr.Textbox(label="Output Directory", value="./generated_tts")
|
263 |
+
|
264 |
+
generate_button = gr.Button("Generate TTS")
|
265 |
+
output_audio = gr.Audio(label="Generated Audio", type="filepath")
|
266 |
+
|
267 |
+
# 1) When user clicks "Transcribe", we call `transcribe_audio`
|
268 |
+
transcribe_button.click(
|
269 |
+
fn=transcribe_audio,
|
270 |
+
inputs=[reference_speech_input],
|
271 |
+
outputs=[reference_text_box],
|
272 |
+
)
|
273 |
+
|
274 |
+
# 2) The actual TTS generation function.
|
275 |
+
def gradio_inference(
|
276 |
+
reference_speech,
|
277 |
+
reference_text,
|
278 |
+
target_text,
|
279 |
+
model_name,
|
280 |
+
model_root,
|
281 |
+
target_duration,
|
282 |
+
top_k,
|
283 |
+
temperature,
|
284 |
+
kvcache,
|
285 |
+
repeat_prompt,
|
286 |
+
stop_repetition,
|
287 |
+
seed,
|
288 |
+
output_dir
|
289 |
+
):
|
290 |
+
# Convert any empty strings to None for optional fields
|
291 |
+
dur = float(target_duration) if target_duration else None
|
292 |
+
|
293 |
+
out_path = run_inference(
|
294 |
+
reference_speech=reference_speech,
|
295 |
+
reference_text=reference_text if reference_text else None,
|
296 |
+
target_text=target_text,
|
297 |
+
model_name=model_name,
|
298 |
+
model_root=model_root,
|
299 |
+
target_duration=dur,
|
300 |
+
top_k=int(top_k),
|
301 |
+
temperature=float(temperature),
|
302 |
+
kvcache=int(kvcache),
|
303 |
+
repeat_prompt=int(repeat_prompt),
|
304 |
+
stop_repetition=int(stop_repetition),
|
305 |
+
seed=int(seed),
|
306 |
+
output_dir=output_dir
|
307 |
+
)
|
308 |
+
return out_path
|
309 |
+
|
310 |
+
# 3) Link the "Generate TTS" button
|
311 |
+
generate_button.click(
|
312 |
+
fn=gradio_inference,
|
313 |
+
inputs=[
|
314 |
+
reference_speech_input,
|
315 |
+
reference_text_box,
|
316 |
+
target_text_box,
|
317 |
+
model_name_box,
|
318 |
+
model_root_box,
|
319 |
+
reference_duration_box,
|
320 |
+
top_k_box,
|
321 |
+
temperature_box,
|
322 |
+
kvcache_box,
|
323 |
+
repeat_prompt_box,
|
324 |
+
stop_repetition_box,
|
325 |
+
seed_box,
|
326 |
+
output_dir_box
|
327 |
+
],
|
328 |
+
outputs=[output_audio],
|
329 |
+
)
|
330 |
+
|
331 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|
332 |
+
|
333 |
+
if __name__ == "__main__":
|
334 |
+
main()
|