Spaces:
Running
on
Zero
Running
on
Zero
# cp from https://github.com/lifeiteng/vall-e/blob/main/valle/data/tokenizer.py | |
# Copyright 2023 (authors: Feiteng Li) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import re | |
from dataclasses import asdict, dataclass | |
from typing import Any, Dict, List, Optional, Pattern, Union | |
import numpy as np | |
import torch | |
import torchaudio | |
# from encodec import EncodecModel | |
# from encodec.utils import convert_audio | |
# from lhotse.features import FeatureExtractor | |
# from lhotse.utils import Seconds, compute_num_frames | |
from phonemizer.backend import EspeakBackend | |
from phonemizer.backend.espeak.language_switch import LanguageSwitch | |
from phonemizer.backend.espeak.words_mismatch import WordMismatch | |
from phonemizer.punctuation import Punctuation | |
from phonemizer.separator import Separator | |
try: | |
from pypinyin import Style, pinyin | |
from pypinyin.style._utils import get_finals, get_initials | |
except Exception: | |
pass | |
class PypinyinBackend: | |
"""PypinyinBackend for Chinese. Most codes is referenced from espnet. | |
There are two types pinyin or initials_finals, one is | |
just like "ni1 hao3", the other is like "n i1 h ao3". | |
""" | |
def __init__( | |
self, | |
backend="initials_finals", | |
punctuation_marks: Union[str, Pattern] = Punctuation.default_marks(), | |
) -> None: | |
self.backend = backend | |
self.punctuation_marks = punctuation_marks | |
def phonemize( | |
self, text: List[str], separator: Separator, strip=True, njobs=1 | |
) -> List[str]: | |
assert isinstance(text, List) | |
phonemized = [] | |
for _text in text: | |
_text = re.sub(" +", " ", _text.strip()) | |
_text = _text.replace(" ", separator.word) | |
phones = [] | |
if self.backend == "pypinyin": | |
for n, py in enumerate( | |
pinyin( | |
_text, style=Style.TONE3, neutral_tone_with_five=True | |
) | |
): | |
if all([c in self.punctuation_marks for c in py[0]]): | |
if len(phones): | |
assert phones[-1] == separator.syllable | |
phones.pop(-1) | |
phones.extend(list(py[0])) | |
else: | |
phones.extend([py[0], separator.syllable]) | |
elif self.backend == "pypinyin_initials_finals": | |
for n, py in enumerate( | |
pinyin( | |
_text, style=Style.TONE3, neutral_tone_with_five=True | |
) | |
): | |
if all([c in self.punctuation_marks for c in py[0]]): | |
if len(phones): | |
assert phones[-1] == separator.syllable | |
phones.pop(-1) | |
phones.extend(list(py[0])) | |
else: | |
if py[0][-1].isalnum(): | |
initial = get_initials(py[0], strict=False) | |
if py[0][-1].isdigit(): | |
final = ( | |
get_finals(py[0][:-1], strict=False) | |
+ py[0][-1] | |
) | |
else: | |
final = get_finals(py[0], strict=False) | |
phones.extend( | |
[ | |
initial, | |
separator.phone, | |
final, | |
separator.syllable, | |
] | |
) | |
else: | |
assert ValueError | |
else: | |
raise NotImplementedError | |
phonemized.append( | |
"".join(phones).rstrip(f"{separator.word}{separator.syllable}") | |
) | |
return phonemized | |
class TextTokenizer: | |
"""Phonemize Text.""" | |
def __init__( | |
self, | |
language="en-us", | |
backend="espeak", | |
separator=Separator(word="_", syllable="-", phone="|"), | |
preserve_punctuation=True, | |
punctuation_marks: Union[str, Pattern] = Punctuation.default_marks(), | |
with_stress: bool = False, | |
tie: Union[bool, str] = False, | |
language_switch: LanguageSwitch = "keep-flags", | |
words_mismatch: WordMismatch = "ignore", | |
) -> None: | |
if backend == "espeak": | |
phonemizer = EspeakBackend( | |
language, | |
punctuation_marks=punctuation_marks, | |
preserve_punctuation=preserve_punctuation, | |
with_stress=with_stress, | |
tie=tie, | |
language_switch=language_switch, | |
words_mismatch=words_mismatch, | |
) | |
elif backend in ["pypinyin", "pypinyin_initials_finals"]: | |
phonemizer = PypinyinBackend( | |
backend=backend, | |
punctuation_marks=punctuation_marks + separator.word, | |
) | |
else: | |
raise NotImplementedError(f"{backend}") | |
self.backend = phonemizer | |
self.separator = separator | |
def to_list(self, phonemized: str) -> List[str]: | |
fields = [] | |
for word in phonemized.split(self.separator.word): | |
# "ɐ m|iː|n?" ɹ|ɪ|z|ɜː|v; h|ɪ|z. | |
pp = re.findall(r"\w+|[^\w\s]", word, re.UNICODE) | |
fields.extend( | |
[p for p in pp if p != self.separator.phone] | |
+ [self.separator.word] | |
) | |
assert len("".join(fields[:-1])) == len(phonemized) - phonemized.count( | |
self.separator.phone | |
) | |
return fields[:-1] | |
def __call__(self, text, strip=True) -> List[List[str]]: | |
if isinstance(text, str): | |
text = [text] | |
phonemized = self.backend.phonemize( | |
text, separator=self.separator, strip=strip, njobs=1 | |
) | |
return [self.to_list(p) for p in phonemized] | |
def tokenize_text(tokenizer: TextTokenizer, text: str) -> List[str]: | |
phonemes = tokenizer([text.strip()]) | |
return phonemes[0] # k2symbols | |
def remove_encodec_weight_norm(model): | |
from encodec.modules import SConv1d | |
from encodec.modules.seanet import SConvTranspose1d, SEANetResnetBlock | |
from torch.nn.utils import remove_weight_norm | |
encoder = model.encoder.model | |
for key in encoder._modules: | |
if isinstance(encoder._modules[key], SEANetResnetBlock): | |
remove_weight_norm(encoder._modules[key].shortcut.conv.conv) | |
block_modules = encoder._modules[key].block._modules | |
for skey in block_modules: | |
if isinstance(block_modules[skey], SConv1d): | |
remove_weight_norm(block_modules[skey].conv.conv) | |
elif isinstance(encoder._modules[key], SConv1d): | |
remove_weight_norm(encoder._modules[key].conv.conv) | |
decoder = model.decoder.model | |
for key in decoder._modules: | |
if isinstance(decoder._modules[key], SEANetResnetBlock): | |
remove_weight_norm(decoder._modules[key].shortcut.conv.conv) | |
block_modules = decoder._modules[key].block._modules | |
for skey in block_modules: | |
if isinstance(block_modules[skey], SConv1d): | |
remove_weight_norm(block_modules[skey].conv.conv) | |
elif isinstance(decoder._modules[key], SConvTranspose1d): | |
remove_weight_norm(decoder._modules[key].convtr.convtr) | |
elif isinstance(decoder._modules[key], SConv1d): | |
remove_weight_norm(decoder._modules[key].conv.conv) | |
# class AudioTokenizer: | |
# """EnCodec audio.""" | |
# def __init__( | |
# self, | |
# bandwidth, float=6.0, | |
# device: Any = None, | |
# ) -> None: | |
# # Instantiate a pretrained EnCodec model | |
# model = EncodecModel.encodec_model_24khz() | |
# model.set_target_bandwidth(bandwidth=bandwidth) | |
# remove_encodec_weight_norm(model) | |
# if not device: | |
# device = torch.device("cpu") | |
# if torch.cuda.is_available(): | |
# device = torch.device("cuda:0") | |
# self._device = device | |
# self.codec = model.to(device) | |
# self.sample_rate = model.sample_rate | |
# self.channels = model.channels | |
# @property | |
# def device(self): | |
# return self._device | |
# def encode(self, wav: torch.Tensor) -> torch.Tensor: | |
# return self.codec.encode(wav.to(self.device)) | |
# def decode(self, frames: torch.Tensor) -> torch.Tensor: | |
# return self.codec.decode(frames) | |
# class AudioTokenizer: | |
# """EnCodec audio.""" | |
# def __init__( | |
# self, | |
# bandwidth: float=6.0, | |
# device: Any = None, | |
# hificodec=False, | |
# signature = None | |
# ) -> None: | |
# self.hificodec = hificodec | |
# self.customized = True if signature != None else False | |
# if hificodec: | |
# import sys | |
# sys.path.append("/home/pyp/AcademiCodec") | |
# from academicodec.models.hificodec.vqvae import VQVAE | |
# config_path = "/home/pyp/AcademiCodec/egs/HiFi-Codec-16k-320d/config_16k_320d.json" | |
# model_path = "/home/pyp/AcademiCodec/egs/HiFi-Codec-16k-320d/checkpoint/HiFi-Codec-16k-320d" | |
# self.sample_rate = 16000 | |
# self.channels = 1 | |
# model = VQVAE(config_path, model_path, with_encoder=True) | |
# model.generator.remove_weight_norm() | |
# model.encoder.remove_weight_norm() | |
# model.eval() | |
# else: | |
# if signature != None: | |
# # use customized encodec model | |
# # import sys | |
# # sys.path.append("home/pyp/audiocraft") | |
# from audiocraft.solvers import CompressionSolver | |
# model_path = f'//sig/{signature}' | |
# model = CompressionSolver.model_from_checkpoint(model_path) | |
# self.sample_rate = model.sample_rate | |
# self.channels = model.channels | |
# else: | |
# # Instantiate a pretrained EnCodec model | |
# model = EncodecModel.encodec_model_24khz() | |
# model.set_target_bandwidth(bandwidth=bandwidth) | |
# remove_encodec_weight_norm(model) | |
# self.sample_rate = model.sample_rate | |
# self.channels = model.channels | |
# if not device: | |
# device = torch.device("cpu") | |
# if torch.cuda.is_available(): | |
# device = torch.device("cuda:0") | |
# self._device = device | |
# self.codec = model.to(device) | |
# @property | |
# def device(self): | |
# return self._device | |
# def encode(self, wav: torch.Tensor) -> torch.Tensor: | |
# if self.hificodec: | |
# assert wav.ndim==3 and wav.shape[:2] == torch.Size((1,1)), wav.shape | |
# wav = wav.squeeze(0) | |
# codes = self.codec.encode(wav.to(self.device)) # [1,T,4] | |
# return [(codes.transpose(2,1),None)] | |
# elif self.customized: | |
# codes = self.codec.encode(wav.to(self.device)) | |
# return [(codes[0], None)] | |
# return self.codec.encode(wav.to(self.device)) | |
# def decode(self, frames: torch.Tensor) -> torch.Tensor: | |
# if self.hificodec: | |
# frames = frames[0][0] # [1,4,T] | |
# assert frames.shape[:2] == torch.Size((1,4)) | |
# audio = self.codec(frames.transpose(2,1)) | |
# assert audio.shape[0] == 1, audio.shape | |
# return audio | |
# elif self.customized: | |
# frames = frames[0][0] # [1,4,T] | |
# return self.codec.decode(frames) | |
# return self.codec.decode(frames) | |
# # try: | |
# # return self.codec.decode(frames) | |
# # except: | |
# # import logging | |
# # logging.info(f"error when decoding frame of shape: {frames[0][0].shape}") | |
# # self.codec.cpu() | |
# # ret = self.codec.cpu().decode([(frames[0][0].cpu(),None)])[0].to(self._device) | |
# # self.codec.to(self._device) | |
# # return [ret] | |
# def tokenize_audio(tokenizer: AudioTokenizer, audio_path: str, offset = -1, num_frames=-1): | |
# # Load and pre-process the audio waveform | |
# if offset != -1 and num_frames!=-1: | |
# wav, sr = torchaudio.load(audio_path, frame_offset=offset, num_frames=num_frames) | |
# else: | |
# wav, sr = torchaudio.load(audio_path) | |
# wav = convert_audio(wav, sr, tokenizer.sample_rate, tokenizer.channels) | |
# wav = wav.unsqueeze(0) | |
# # Extract discrete codes from EnCodec | |
# with torch.no_grad(): | |
# encoded_frames = tokenizer.encode(wav) | |
# return encoded_frames | |
# @dataclass | |
# class AudioTokenConfig: | |
# frame_shift: Seconds = 320.0 / 24000 | |
# num_quantizers: int = 8 | |
# def to_dict(self) -> Dict[str, Any]: | |
# return asdict(self) | |
# @staticmethod | |
# def from_dict(data: Dict[str, Any]) -> "AudioTokenConfig": | |
# return AudioTokenConfig(**data) | |
# class AudioTokenExtractor(FeatureExtractor): | |
# name = "encodec" | |
# config_type = AudioTokenConfig | |
# def __init__(self, config: Optional[Any] = None): | |
# super(AudioTokenExtractor, self).__init__(config) | |
# self.tokenizer = AudioTokenizer() | |
# def extract( | |
# self, samples: Union[np.ndarray, torch.Tensor], sampling_rate: int | |
# ) -> np.ndarray: | |
# if not isinstance(samples, torch.Tensor): | |
# samples = torch.from_numpy(samples) | |
# if sampling_rate != self.tokenizer.sample_rate: | |
# samples = convert_audio( | |
# samples, | |
# sampling_rate, | |
# self.tokenizer.sample_rate, | |
# self.tokenizer.channels, | |
# ) | |
# if len(samples.shape) == 2: | |
# samples = samples.unsqueeze(0) | |
# else: | |
# raise ValueError() | |
# device = self.tokenizer.device | |
# encoded_frames = self.tokenizer.encode(samples.detach().to(device)) | |
# codes = encoded_frames[0][0] # [B, n_q, T] | |
# if True: | |
# duration = round(samples.shape[-1] / sampling_rate, ndigits=12) | |
# expected_num_frames = compute_num_frames( | |
# duration=duration, | |
# frame_shift=self.frame_shift, | |
# sampling_rate=sampling_rate, | |
# ) | |
# assert abs(codes.shape[-1] - expected_num_frames) <= 1 | |
# codes = codes[..., :expected_num_frames] | |
# return codes.cpu().squeeze(0).permute(1, 0).numpy() | |
# @property | |
# def frame_shift(self) -> Seconds: | |
# return self.config.frame_shift | |
# def feature_dim(self, sampling_rate: int) -> int: | |
# return self.config.num_quantizers | |
# def pad_tensor_list(self, tensor_list, device, padding_value=0): | |
# # 计算每个张量的长度 | |
# lengths = [tensor.shape[0] for tensor in tensor_list] | |
# # 使用pad_sequence函数进行填充 | |
# tensor_list = [torch.Tensor(t).to(device) for t in tensor_list] | |
# padded_tensor = torch.nn.utils.rnn.pad_sequence( | |
# tensor_list, batch_first=True, padding_value=padding_value | |
# ) | |
# return padded_tensor, lengths | |
# def extract_batch(self, samples, sampling_rate, lengths) -> np.ndarray: | |
# samples = [wav.squeeze() for wav in samples] | |
# device = self.tokenizer.device | |
# samples, lengths = self.pad_tensor_list(samples, device) | |
# samples = samples.unsqueeze(1) | |
# if not isinstance(samples, torch.Tensor): | |
# samples = torch.from_numpy(samples) | |
# if len(samples.shape) != 3: | |
# raise ValueError() | |
# if sampling_rate != self.tokenizer.sample_rate: | |
# samples = [ | |
# convert_audio( | |
# wav, | |
# sampling_rate, | |
# self.tokenizer.sample_rate, | |
# self.tokenizer.channels, | |
# ) | |
# for wav in samples | |
# ] | |
# # Extract discrete codes from EnCodec | |
# with torch.no_grad(): | |
# encoded_frames = self.tokenizer.encode(samples.detach().to(device)) | |
# encoded_frames = encoded_frames[0][0] # [B, n_q, T] | |
# batch_codes = [] | |
# for b, length in enumerate(lengths): | |
# codes = encoded_frames[b] | |
# duration = round(length / sampling_rate, ndigits=12) | |
# expected_num_frames = compute_num_frames( | |
# duration=duration, | |
# frame_shift=self.frame_shift, | |
# sampling_rate=sampling_rate, | |
# ) | |
# batch_codes.append(codes[..., :expected_num_frames]) | |
# return [codes.cpu().permute(1, 0).numpy() for codes in batch_codes] | |
if __name__ == "__main__": | |
model = EncodecModel.encodec_model_24khz() | |
model.set_target_bandwidth(6.0) | |
# model.cuda() | |
samples = torch.from_numpy(np.random.random([4, 1, 30000])).type(torch.float32) | |
codes_norm = model.encode(samples.cuda()) | |
remove_encodec_weight_norm(model) | |
codes_raw = model.encode(samples.cuda()) | |
assert torch.allclose(codes_raw[0][0], codes_norm[0][0]) |