Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,240 Bytes
3f32750 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import os
import time
import torch
from utils import *
from config import *
from transformers import GPT2Config, LlamaConfig
from abctoolkit.utils import Exclaim_re, Quote_re, SquareBracket_re, Barline_regexPattern
from abctoolkit.transpose import Note_list, Pitch_sign_list
from abctoolkit.duration import calculate_bartext_duration
Note_list = Note_list + ['z', 'x']
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
patchilizer = Patchilizer()
patch_config = GPT2Config(num_hidden_layers=PATCH_NUM_LAYERS,
max_length=PATCH_LENGTH,
max_position_embeddings=PATCH_LENGTH,
n_embd=HIDDEN_SIZE,
num_attention_heads=HIDDEN_SIZE // 64,
vocab_size=1)
byte_config = GPT2Config(num_hidden_layers=CHAR_NUM_LAYERS,
max_length=PATCH_SIZE + 1,
max_position_embeddings=PATCH_SIZE + 1,
hidden_size=HIDDEN_SIZE,
num_attention_heads=HIDDEN_SIZE // 64,
vocab_size=128)
model = NotaGenLMHeadModel(encoder_config=patch_config, decoder_config=byte_config)
print("Parameter Number: " + str(sum(p.numel() for p in model.parameters() if p.requires_grad)))
checkpoint = torch.load(INFERENCE_WEIGHTS_PATH, map_location=torch.device(device))
model.load_state_dict(checkpoint['model'])
model = model.to(device)
model.eval()
def rest_unreduce(abc_lines):
tunebody_index = None
for i in range(len(abc_lines)):
if '[V:' in abc_lines[i]:
tunebody_index = i
break
metadata_lines = abc_lines[: tunebody_index]
tunebody_lines = abc_lines[tunebody_index:]
part_symbol_list = []
voice_group_list = []
for line in metadata_lines:
if line.startswith('%%score'):
for round_bracket_match in re.findall(r'\((.*?)\)', line):
voice_group_list.append(round_bracket_match.split())
existed_voices = [item for sublist in voice_group_list for item in sublist]
if line.startswith('V:'):
symbol = line.split()[0]
part_symbol_list.append(symbol)
if symbol[2:] not in existed_voices:
voice_group_list.append([symbol[2:]])
z_symbol_list = [] # voices that use z as rest
x_symbol_list = [] # voices that use x as rest
for voice_group in voice_group_list:
z_symbol_list.append('V:' + voice_group[0])
for j in range(1, len(voice_group)):
x_symbol_list.append('V:' + voice_group[j])
part_symbol_list.sort(key=lambda x: int(x[2:]))
unreduced_tunebody_lines = []
for i, line in enumerate(tunebody_lines):
unreduced_line = ''
line = re.sub(r'^\[r:[^\]]*\]', '', line)
pattern = r'\[V:(\d+)\](.*?)(?=\[V:|$)'
matches = re.findall(pattern, line)
line_bar_dict = {}
for match in matches:
key = f'V:{match[0]}'
value = match[1]
line_bar_dict[key] = value
# calculate duration and collect barline
dur_dict = {}
for symbol, bartext in line_bar_dict.items():
right_barline = ''.join(re.split(Barline_regexPattern, bartext)[-2:])
bartext = bartext[:-len(right_barline)]
try:
bar_dur = calculate_bartext_duration(bartext)
except:
bar_dur = None
if bar_dur is not None:
if bar_dur not in dur_dict.keys():
dur_dict[bar_dur] = 1
else:
dur_dict[bar_dur] += 1
try:
ref_dur = max(dur_dict, key=dur_dict.get)
except:
pass # use last ref_dur
if i == 0:
prefix_left_barline = line.split('[V:')[0]
else:
prefix_left_barline = ''
for symbol in part_symbol_list:
if symbol in line_bar_dict.keys():
symbol_bartext = line_bar_dict[symbol]
else:
if symbol in z_symbol_list:
symbol_bartext = prefix_left_barline + 'z' + str(ref_dur) + right_barline
elif symbol in x_symbol_list:
symbol_bartext = prefix_left_barline + 'x' + str(ref_dur) + right_barline
unreduced_line += '[' + symbol + ']' + symbol_bartext
unreduced_tunebody_lines.append(unreduced_line + '\n')
unreduced_lines = metadata_lines + unreduced_tunebody_lines
return unreduced_lines
def inference_patch(period, composer, instrumentation):
prompt_lines=[
'%' + period + '\n',
'%' + composer + '\n',
'%' + instrumentation + '\n']
while True:
failure_flag = False
bos_patch = [patchilizer.bos_token_id] * (PATCH_SIZE - 1) + [patchilizer.eos_token_id]
start_time = time.time()
prompt_patches = patchilizer.patchilize_metadata(prompt_lines)
byte_list = list(''.join(prompt_lines))
print(''.join(byte_list), end='')
prompt_patches = [[ord(c) for c in patch] + [patchilizer.special_token_id] * (PATCH_SIZE - len(patch)) for patch
in prompt_patches]
prompt_patches.insert(0, bos_patch)
input_patches = torch.tensor(prompt_patches, device=device).reshape(1, -1)
end_flag = False
cut_index = None
tunebody_flag = False
while True:
predicted_patch = model.generate(input_patches.unsqueeze(0),
top_k=TOP_K,
top_p=TOP_P,
temperature=TEMPERATURE)
if not tunebody_flag and patchilizer.decode([predicted_patch]).startswith('[r:'): # start with [r:0/
tunebody_flag = True
r0_patch = torch.tensor([ord(c) for c in '[r:0/']).unsqueeze(0).to(device)
temp_input_patches = torch.concat([input_patches, r0_patch], axis=-1)
predicted_patch = model.generate(temp_input_patches.unsqueeze(0),
top_k=TOP_K,
top_p=TOP_P,
temperature=TEMPERATURE)
predicted_patch = [ord(c) for c in '[r:0/'] + predicted_patch
if predicted_patch[0] == patchilizer.bos_token_id and predicted_patch[1] == patchilizer.eos_token_id:
end_flag = True
break
next_patch = patchilizer.decode([predicted_patch])
for char in next_patch:
byte_list.append(char)
print(char, end='')
patch_end_flag = False
for j in range(len(predicted_patch)):
if patch_end_flag:
predicted_patch[j] = patchilizer.special_token_id
if predicted_patch[j] == patchilizer.eos_token_id:
patch_end_flag = True
predicted_patch = torch.tensor([predicted_patch], device=device) # (1, 16)
input_patches = torch.cat([input_patches, predicted_patch], dim=1) # (1, 16 * patch_len)
if len(byte_list) > 102400:
failure_flag = True
break
if time.time() - start_time > 20 * 60:
failure_flag = True
break
if input_patches.shape[1] >= PATCH_LENGTH * PATCH_SIZE and not end_flag:
print('Stream generating...')
abc_code = ''.join(byte_list)
abc_lines = abc_code.split('\n')
tunebody_index = None
for i, line in enumerate(abc_lines):
if line.startswith('[r:') or line.startswith('[V:'):
tunebody_index = i
break
if tunebody_index is None or tunebody_index == len(abc_lines) - 1:
break
metadata_lines = abc_lines[:tunebody_index]
tunebody_lines = abc_lines[tunebody_index:]
metadata_lines = [line + '\n' for line in metadata_lines]
if not abc_code.endswith('\n'):
tunebody_lines = [tunebody_lines[i] + '\n' for i in range(len(tunebody_lines) - 1)] + [
tunebody_lines[-1]]
else:
tunebody_lines = [tunebody_lines[i] + '\n' for i in range(len(tunebody_lines))]
if cut_index is None:
cut_index = len(tunebody_lines) // 2
abc_code_slice = ''.join(metadata_lines + tunebody_lines[-cut_index:])
input_patches = patchilizer.encode_generate(abc_code_slice)
input_patches = [item for sublist in input_patches for item in sublist]
input_patches = torch.tensor([input_patches], device=device)
input_patches = input_patches.reshape(1, -1)
if not failure_flag:
abc_text = ''.join(byte_list)
# unreduce
abc_lines = abc_text.split('\n')
abc_lines = list(filter(None, abc_lines))
abc_lines = [line + '\n' for line in abc_lines]
try:
unreduced_abc_lines = rest_unreduce(abc_lines)
except:
failure_flag = True
pass
else:
unreduced_abc_lines = [line for line in unreduced_abc_lines if not(line.startswith('%') and not line.startswith('%%'))]
unreduced_abc_lines = ['X:1\n'] + unreduced_abc_lines
unreduced_abc_text = ''.join(unreduced_abc_lines)
return unreduced_abc_text
if __name__ == '__main__':
inference_patch('Classical', 'Beethoven, Ludwig van', 'Keyboard')
|