#!/usr/bin/env python3 # -*- encoding: utf-8 -*- # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. # MIT License (https://opensource.org/licenses/MIT) import time import torch import logging from torch.cuda.amp import autocast from typing import Union, Dict, List, Tuple, Optional from funasr_detach.register import tables from funasr_detach.models.ctc.ctc import CTC from funasr_detach.utils import postprocess_utils from funasr_detach.metrics.compute_acc import th_accuracy from funasr_detach.utils.datadir_writer import DatadirWriter from funasr_detach.models.paraformer.cif_predictor import mae_loss from funasr_detach.train_utils.device_funcs import force_gatherable from funasr_detach.losses.label_smoothing_loss import LabelSmoothingLoss from funasr_detach.models.transformer.utils.add_sos_eos import add_sos_eos from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask, pad_list from funasr_detach.utils.load_utils import load_audio_text_image_video, extract_fbank from funasr_detach.models.scama.utils import sequence_mask @tables.register("model_classes", "UniASR") class UniASR(torch.nn.Module): """ Author: Speech Lab of DAMO Academy, Alibaba Group """ def __init__( self, specaug: str = None, specaug_conf: dict = None, normalize: str = None, normalize_conf: dict = None, encoder: str = None, encoder_conf: dict = None, encoder2: str = None, encoder2_conf: dict = None, decoder: str = None, decoder_conf: dict = None, decoder2: str = None, decoder2_conf: dict = None, predictor: str = None, predictor_conf: dict = None, predictor_bias: int = 0, predictor_weight: float = 0.0, predictor2: str = None, predictor2_conf: dict = None, predictor2_bias: int = 0, predictor2_weight: float = 0.0, ctc: str = None, ctc_conf: dict = None, ctc_weight: float = 0.5, ctc2: str = None, ctc2_conf: dict = None, ctc2_weight: float = 0.5, decoder_attention_chunk_type: str = "chunk", decoder_attention_chunk_type2: str = "chunk", stride_conv=None, stride_conv_conf: dict = None, loss_weight_model1: float = 0.5, input_size: int = 80, vocab_size: int = -1, ignore_id: int = -1, blank_id: int = 0, sos: int = 1, eos: int = 2, lsm_weight: float = 0.0, length_normalized_loss: bool = False, share_embedding: bool = False, **kwargs, ): super().__init__() if specaug is not None: specaug_class = tables.specaug_classes.get(specaug) specaug = specaug_class(**specaug_conf) if normalize is not None: normalize_class = tables.normalize_classes.get(normalize) normalize = normalize_class(**normalize_conf) encoder_class = tables.encoder_classes.get(encoder) encoder = encoder_class(input_size=input_size, **encoder_conf) encoder_output_size = encoder.output_size() decoder_class = tables.decoder_classes.get(decoder) decoder = decoder_class( vocab_size=vocab_size, encoder_output_size=encoder_output_size, **decoder_conf, ) predictor_class = tables.predictor_classes.get(predictor) predictor = predictor_class(**predictor_conf) from funasr_detach.models.transformer.utils.subsampling import Conv1dSubsampling stride_conv = Conv1dSubsampling( **stride_conv_conf, idim=input_size + encoder_output_size, odim=input_size + encoder_output_size, ) stride_conv_output_size = stride_conv.output_size() encoder_class = tables.encoder_classes.get(encoder2) encoder2 = encoder_class(input_size=stride_conv_output_size, **encoder2_conf) encoder2_output_size = encoder2.output_size() decoder_class = tables.decoder_classes.get(decoder2) decoder2 = decoder_class( vocab_size=vocab_size, encoder_output_size=encoder2_output_size, **decoder2_conf, ) predictor_class = tables.predictor_classes.get(predictor2) predictor2 = predictor_class(**predictor2_conf) self.blank_id = blank_id self.sos = sos self.eos = eos self.vocab_size = vocab_size self.ignore_id = ignore_id self.ctc_weight = ctc_weight self.ctc2_weight = ctc2_weight self.specaug = specaug self.normalize = normalize self.encoder = encoder self.error_calculator = None self.decoder = decoder self.ctc = None self.ctc2 = None self.criterion_att = LabelSmoothingLoss( size=vocab_size, padding_idx=ignore_id, smoothing=lsm_weight, normalize_length=length_normalized_loss, ) self.predictor = predictor self.predictor_weight = predictor_weight self.criterion_pre = mae_loss(normalize_length=length_normalized_loss) self.encoder1_encoder2_joint_training = kwargs.get( "encoder1_encoder2_joint_training", True ) if self.encoder.overlap_chunk_cls is not None: from funasr_detach.models.scama.chunk_utilis import ( build_scama_mask_for_cross_attention_decoder, ) self.build_scama_mask_for_cross_attention_decoder_fn = ( build_scama_mask_for_cross_attention_decoder ) self.decoder_attention_chunk_type = decoder_attention_chunk_type self.encoder2 = encoder2 self.decoder2 = decoder2 self.ctc2_weight = ctc2_weight self.predictor2 = predictor2 self.predictor2_weight = predictor2_weight self.decoder_attention_chunk_type2 = decoder_attention_chunk_type2 self.stride_conv = stride_conv self.loss_weight_model1 = loss_weight_model1 if self.encoder2.overlap_chunk_cls is not None: from funasr_detach.models.scama.chunk_utilis import ( build_scama_mask_for_cross_attention_decoder, ) self.build_scama_mask_for_cross_attention_decoder_fn2 = ( build_scama_mask_for_cross_attention_decoder ) self.decoder_attention_chunk_type2 = decoder_attention_chunk_type2 self.length_normalized_loss = length_normalized_loss self.enable_maas_finetune = kwargs.get("enable_maas_finetune", False) self.freeze_encoder2 = kwargs.get("freeze_encoder2", False) self.beam_search = None def forward( self, speech: torch.Tensor, speech_lengths: torch.Tensor, text: torch.Tensor, text_lengths: torch.Tensor, **kwargs, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: """Frontend + Encoder + Decoder + Calc loss Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) text: (Batch, Length) text_lengths: (Batch,) """ decoding_ind = kwargs.get("decoding_ind", None) if len(text_lengths.size()) > 1: text_lengths = text_lengths[:, 0] if len(speech_lengths.size()) > 1: speech_lengths = speech_lengths[:, 0] batch_size = speech.shape[0] ind = self.encoder.overlap_chunk_cls.random_choice(self.training, decoding_ind) # 1. Encoder if self.enable_maas_finetune: with torch.no_grad(): speech_raw, encoder_out, encoder_out_lens = self.encode( speech, speech_lengths, ind=ind ) else: speech_raw, encoder_out, encoder_out_lens = self.encode( speech, speech_lengths, ind=ind ) loss_att, acc_att, cer_att, wer_att = None, None, None, None loss_ctc, cer_ctc = None, None stats = dict() loss_pre = None loss, loss1, loss2 = 0.0, 0.0, 0.0 if self.loss_weight_model1 > 0.0: ## model1 # 1. CTC branch if self.enable_maas_finetune: with torch.no_grad(): loss_att, acc_att, cer_att, wer_att, loss_pre = ( self._calc_att_predictor_loss( encoder_out, encoder_out_lens, text, text_lengths ) ) loss = loss_att + loss_pre * self.predictor_weight # Collect Attn branch stats stats["loss_att"] = ( loss_att.detach() if loss_att is not None else None ) stats["acc"] = acc_att stats["cer"] = cer_att stats["wer"] = wer_att stats["loss_pre"] = ( loss_pre.detach().cpu() if loss_pre is not None else None ) else: loss_att, acc_att, cer_att, wer_att, loss_pre = ( self._calc_att_predictor_loss( encoder_out, encoder_out_lens, text, text_lengths ) ) loss = loss_att + loss_pre * self.predictor_weight # Collect Attn branch stats stats["loss_att"] = loss_att.detach() if loss_att is not None else None stats["acc"] = acc_att stats["cer"] = cer_att stats["wer"] = wer_att stats["loss_pre"] = ( loss_pre.detach().cpu() if loss_pre is not None else None ) loss1 = loss if self.loss_weight_model1 < 1.0: ## model2 # encoder2 if self.freeze_encoder2: with torch.no_grad(): encoder_out, encoder_out_lens = self.encode2( encoder_out, encoder_out_lens, speech_raw, speech_lengths, ind=ind, ) else: encoder_out, encoder_out_lens = self.encode2( encoder_out, encoder_out_lens, speech_raw, speech_lengths, ind=ind ) intermediate_outs = None if isinstance(encoder_out, tuple): intermediate_outs = encoder_out[1] encoder_out = encoder_out[0] loss_att, acc_att, cer_att, wer_att, loss_pre = ( self._calc_att_predictor_loss2( encoder_out, encoder_out_lens, text, text_lengths ) ) loss = loss_att + loss_pre * self.predictor2_weight # Collect Attn branch stats stats["loss_att2"] = loss_att.detach() if loss_att is not None else None stats["acc2"] = acc_att stats["cer2"] = cer_att stats["wer2"] = wer_att stats["loss_pre2"] = ( loss_pre.detach().cpu() if loss_pre is not None else None ) loss2 = loss loss = loss1 * self.loss_weight_model1 + loss2 * (1 - self.loss_weight_model1) stats["loss1"] = torch.clone(loss1.detach()) stats["loss2"] = torch.clone(loss2.detach()) stats["loss"] = torch.clone(loss.detach()) # force_gatherable: to-device and to-tensor if scalar for DataParallel if self.length_normalized_loss: batch_size = int((text_lengths + 1).sum()) loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) return loss, stats, weight def collect_feats( self, speech: torch.Tensor, speech_lengths: torch.Tensor, text: torch.Tensor, text_lengths: torch.Tensor, ) -> Dict[str, torch.Tensor]: if self.extract_feats_in_collect_stats: feats, feats_lengths = self._extract_feats(speech, speech_lengths) else: # Generate dummy stats if extract_feats_in_collect_stats is False logging.warning( "Generating dummy stats for feats and feats_lengths, " "because encoder_conf.extract_feats_in_collect_stats is " f"{self.extract_feats_in_collect_stats}" ) feats, feats_lengths = speech, speech_lengths return {"feats": feats, "feats_lengths": feats_lengths} def encode( self, speech: torch.Tensor, speech_lengths: torch.Tensor, **kwargs, ): """Frontend + Encoder. Note that this method is used by asr_inference.py Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) """ ind = kwargs.get("ind", 0) with autocast(False): # Data augmentation if self.specaug is not None and self.training: speech, speech_lengths = self.specaug(speech, speech_lengths) # Normalization for feature: e.g. Global-CMVN, Utterance-CMVN if self.normalize is not None: speech, speech_lengths = self.normalize(speech, speech_lengths) speech_raw = speech.clone().to(speech.device) # 4. Forward encoder encoder_out, encoder_out_lens, _ = self.encoder(speech, speech_lengths, ind=ind) if isinstance(encoder_out, tuple): encoder_out = encoder_out[0] return speech_raw, encoder_out, encoder_out_lens def encode2( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, speech: torch.Tensor, speech_lengths: torch.Tensor, **kwargs, ): """Frontend + Encoder. Note that this method is used by asr_inference.py Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) """ ind = kwargs.get("ind", 0) encoder_out_rm, encoder_out_lens_rm = ( self.encoder.overlap_chunk_cls.remove_chunk( encoder_out, encoder_out_lens, chunk_outs=None, ) ) # residual_input encoder_out = torch.cat((speech, encoder_out_rm), dim=-1) encoder_out_lens = encoder_out_lens_rm if self.stride_conv is not None: speech, speech_lengths = self.stride_conv(encoder_out, encoder_out_lens) if not self.encoder1_encoder2_joint_training: speech = speech.detach() speech_lengths = speech_lengths.detach() # 4. Forward encoder # feats: (Batch, Length, Dim) # -> encoder_out: (Batch, Length2, Dim2) encoder_out, encoder_out_lens, _ = self.encoder2( speech, speech_lengths, ind=ind ) if isinstance(encoder_out, tuple): encoder_out = encoder_out[0] return encoder_out, encoder_out_lens def nll( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, ) -> torch.Tensor: """Compute negative log likelihood(nll) from transformer-decoder Normally, this function is called in batchify_nll. Args: encoder_out: (Batch, Length, Dim) encoder_out_lens: (Batch,) ys_pad: (Batch, Length) ys_pad_lens: (Batch,) """ ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) ys_in_lens = ys_pad_lens + 1 # 1. Forward decoder decoder_out, _ = self.decoder( encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens ) # [batch, seqlen, dim] batch_size = decoder_out.size(0) decoder_num_class = decoder_out.size(2) # nll: negative log-likelihood nll = torch.nn.functional.cross_entropy( decoder_out.view(-1, decoder_num_class), ys_out_pad.view(-1), ignore_index=self.ignore_id, reduction="none", ) nll = nll.view(batch_size, -1) nll = nll.sum(dim=1) assert nll.size(0) == batch_size return nll def batchify_nll( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, batch_size: int = 100, ): """Compute negative log likelihood(nll) from transformer-decoder To avoid OOM, this fuction seperate the input into batches. Then call nll for each batch and combine and return results. Args: encoder_out: (Batch, Length, Dim) encoder_out_lens: (Batch,) ys_pad: (Batch, Length) ys_pad_lens: (Batch,) batch_size: int, samples each batch contain when computing nll, you may change this to avoid OOM or increase GPU memory usage """ total_num = encoder_out.size(0) if total_num <= batch_size: nll = self.nll(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens) else: nll = [] start_idx = 0 while True: end_idx = min(start_idx + batch_size, total_num) batch_encoder_out = encoder_out[start_idx:end_idx, :, :] batch_encoder_out_lens = encoder_out_lens[start_idx:end_idx] batch_ys_pad = ys_pad[start_idx:end_idx, :] batch_ys_pad_lens = ys_pad_lens[start_idx:end_idx] batch_nll = self.nll( batch_encoder_out, batch_encoder_out_lens, batch_ys_pad, batch_ys_pad_lens, ) nll.append(batch_nll) start_idx = end_idx if start_idx == total_num: break nll = torch.cat(nll) assert nll.size(0) == total_num return nll def _calc_att_loss( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, ): ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) ys_in_lens = ys_pad_lens + 1 # 1. Forward decoder decoder_out, _ = self.decoder( encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens ) # 2. Compute attention loss loss_att = self.criterion_att(decoder_out, ys_out_pad) acc_att = th_accuracy( decoder_out.view(-1, self.vocab_size), ys_out_pad, ignore_label=self.ignore_id, ) # Compute cer/wer using attention-decoder if self.training or self.error_calculator is None: cer_att, wer_att = None, None else: ys_hat = decoder_out.argmax(dim=-1) cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu()) return loss_att, acc_att, cer_att, wer_att def _calc_att_predictor_loss( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, ): ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) ys_in_lens = ys_pad_lens + 1 encoder_out_mask = sequence_mask( encoder_out_lens, maxlen=encoder_out.size(1), dtype=encoder_out.dtype, device=encoder_out.device, )[:, None, :] mask_chunk_predictor = None if self.encoder.overlap_chunk_cls is not None: mask_chunk_predictor = ( self.encoder.overlap_chunk_cls.get_mask_chunk_predictor( None, device=encoder_out.device, batch_size=encoder_out.size(0) ) ) mask_shfit_chunk = self.encoder.overlap_chunk_cls.get_mask_shfit_chunk( None, device=encoder_out.device, batch_size=encoder_out.size(0) ) encoder_out = encoder_out * mask_shfit_chunk pre_acoustic_embeds, pre_token_length, pre_alphas, _ = self.predictor( encoder_out, ys_out_pad, encoder_out_mask, ignore_id=self.ignore_id, mask_chunk_predictor=mask_chunk_predictor, target_label_length=ys_in_lens, ) predictor_alignments, predictor_alignments_len = ( self.predictor.gen_frame_alignments(pre_alphas, encoder_out_lens) ) scama_mask = None if ( self.encoder.overlap_chunk_cls is not None and self.decoder_attention_chunk_type == "chunk" ): encoder_chunk_size = self.encoder.overlap_chunk_cls.chunk_size_pad_shift_cur attention_chunk_center_bias = 0 attention_chunk_size = encoder_chunk_size decoder_att_look_back_factor = ( self.encoder.overlap_chunk_cls.decoder_att_look_back_factor_cur ) mask_shift_att_chunk_decoder = ( self.encoder.overlap_chunk_cls.get_mask_shift_att_chunk_decoder( None, device=encoder_out.device, batch_size=encoder_out.size(0) ) ) scama_mask = self.build_scama_mask_for_cross_attention_decoder_fn( predictor_alignments=predictor_alignments, encoder_sequence_length=encoder_out_lens, chunk_size=1, encoder_chunk_size=encoder_chunk_size, attention_chunk_center_bias=attention_chunk_center_bias, attention_chunk_size=attention_chunk_size, attention_chunk_type=self.decoder_attention_chunk_type, step=None, predictor_mask_chunk_hopping=mask_chunk_predictor, decoder_att_look_back_factor=decoder_att_look_back_factor, mask_shift_att_chunk_decoder=mask_shift_att_chunk_decoder, target_length=ys_in_lens, is_training=self.training, ) elif self.encoder.overlap_chunk_cls is not None: encoder_out, encoder_out_lens = self.encoder.overlap_chunk_cls.remove_chunk( encoder_out, encoder_out_lens, chunk_outs=None ) # try: # 1. Forward decoder decoder_out, _ = self.decoder( encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens, chunk_mask=scama_mask, pre_acoustic_embeds=pre_acoustic_embeds, ) # 2. Compute attention loss loss_att = self.criterion_att(decoder_out, ys_out_pad) acc_att = th_accuracy( decoder_out.view(-1, self.vocab_size), ys_out_pad, ignore_label=self.ignore_id, ) # predictor loss loss_pre = self.criterion_pre( ys_in_lens.type_as(pre_token_length), pre_token_length ) # Compute cer/wer using attention-decoder if self.training or self.error_calculator is None: cer_att, wer_att = None, None else: ys_hat = decoder_out.argmax(dim=-1) cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu()) return loss_att, acc_att, cer_att, wer_att, loss_pre def _calc_att_predictor_loss2( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, ): ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) ys_in_lens = ys_pad_lens + 1 encoder_out_mask = sequence_mask( encoder_out_lens, maxlen=encoder_out.size(1), dtype=encoder_out.dtype, device=encoder_out.device, )[:, None, :] mask_chunk_predictor = None if self.encoder2.overlap_chunk_cls is not None: mask_chunk_predictor = ( self.encoder2.overlap_chunk_cls.get_mask_chunk_predictor( None, device=encoder_out.device, batch_size=encoder_out.size(0) ) ) mask_shfit_chunk = self.encoder2.overlap_chunk_cls.get_mask_shfit_chunk( None, device=encoder_out.device, batch_size=encoder_out.size(0) ) encoder_out = encoder_out * mask_shfit_chunk pre_acoustic_embeds, pre_token_length, pre_alphas, _ = self.predictor2( encoder_out, ys_out_pad, encoder_out_mask, ignore_id=self.ignore_id, mask_chunk_predictor=mask_chunk_predictor, target_label_length=ys_in_lens, ) predictor_alignments, predictor_alignments_len = ( self.predictor2.gen_frame_alignments(pre_alphas, encoder_out_lens) ) scama_mask = None if ( self.encoder2.overlap_chunk_cls is not None and self.decoder_attention_chunk_type2 == "chunk" ): encoder_chunk_size = ( self.encoder2.overlap_chunk_cls.chunk_size_pad_shift_cur ) attention_chunk_center_bias = 0 attention_chunk_size = encoder_chunk_size decoder_att_look_back_factor = ( self.encoder2.overlap_chunk_cls.decoder_att_look_back_factor_cur ) mask_shift_att_chunk_decoder = ( self.encoder2.overlap_chunk_cls.get_mask_shift_att_chunk_decoder( None, device=encoder_out.device, batch_size=encoder_out.size(0) ) ) scama_mask = self.build_scama_mask_for_cross_attention_decoder_fn2( predictor_alignments=predictor_alignments, encoder_sequence_length=encoder_out_lens, chunk_size=1, encoder_chunk_size=encoder_chunk_size, attention_chunk_center_bias=attention_chunk_center_bias, attention_chunk_size=attention_chunk_size, attention_chunk_type=self.decoder_attention_chunk_type2, step=None, predictor_mask_chunk_hopping=mask_chunk_predictor, decoder_att_look_back_factor=decoder_att_look_back_factor, mask_shift_att_chunk_decoder=mask_shift_att_chunk_decoder, target_length=ys_in_lens, is_training=self.training, ) elif self.encoder2.overlap_chunk_cls is not None: encoder_out, encoder_out_lens = ( self.encoder2.overlap_chunk_cls.remove_chunk( encoder_out, encoder_out_lens, chunk_outs=None ) ) # try: # 1. Forward decoder decoder_out, _ = self.decoder2( encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens, chunk_mask=scama_mask, pre_acoustic_embeds=pre_acoustic_embeds, ) # 2. Compute attention loss loss_att = self.criterion_att(decoder_out, ys_out_pad) acc_att = th_accuracy( decoder_out.view(-1, self.vocab_size), ys_out_pad, ignore_label=self.ignore_id, ) # predictor loss loss_pre = self.criterion_pre( ys_in_lens.type_as(pre_token_length), pre_token_length ) # Compute cer/wer using attention-decoder if self.training or self.error_calculator is None: cer_att, wer_att = None, None else: ys_hat = decoder_out.argmax(dim=-1) cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu()) return loss_att, acc_att, cer_att, wer_att, loss_pre def calc_predictor_mask( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor = None, ys_pad_lens: torch.Tensor = None, ): # ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) # ys_in_lens = ys_pad_lens + 1 ys_out_pad, ys_in_lens = None, None encoder_out_mask = sequence_mask( encoder_out_lens, maxlen=encoder_out.size(1), dtype=encoder_out.dtype, device=encoder_out.device, )[:, None, :] mask_chunk_predictor = None if self.encoder.overlap_chunk_cls is not None: mask_chunk_predictor = ( self.encoder.overlap_chunk_cls.get_mask_chunk_predictor( None, device=encoder_out.device, batch_size=encoder_out.size(0) ) ) mask_shfit_chunk = self.encoder.overlap_chunk_cls.get_mask_shfit_chunk( None, device=encoder_out.device, batch_size=encoder_out.size(0) ) encoder_out = encoder_out * mask_shfit_chunk pre_acoustic_embeds, pre_token_length, pre_alphas, _ = self.predictor( encoder_out, ys_out_pad, encoder_out_mask, ignore_id=self.ignore_id, mask_chunk_predictor=mask_chunk_predictor, target_label_length=ys_in_lens, ) predictor_alignments, predictor_alignments_len = ( self.predictor.gen_frame_alignments(pre_alphas, encoder_out_lens) ) scama_mask = None if ( self.encoder.overlap_chunk_cls is not None and self.decoder_attention_chunk_type == "chunk" ): encoder_chunk_size = self.encoder.overlap_chunk_cls.chunk_size_pad_shift_cur attention_chunk_center_bias = 0 attention_chunk_size = encoder_chunk_size decoder_att_look_back_factor = ( self.encoder.overlap_chunk_cls.decoder_att_look_back_factor_cur ) mask_shift_att_chunk_decoder = ( self.encoder.overlap_chunk_cls.get_mask_shift_att_chunk_decoder( None, device=encoder_out.device, batch_size=encoder_out.size(0) ) ) scama_mask = self.build_scama_mask_for_cross_attention_decoder_fn( predictor_alignments=predictor_alignments, encoder_sequence_length=encoder_out_lens, chunk_size=1, encoder_chunk_size=encoder_chunk_size, attention_chunk_center_bias=attention_chunk_center_bias, attention_chunk_size=attention_chunk_size, attention_chunk_type=self.decoder_attention_chunk_type, step=None, predictor_mask_chunk_hopping=mask_chunk_predictor, decoder_att_look_back_factor=decoder_att_look_back_factor, mask_shift_att_chunk_decoder=mask_shift_att_chunk_decoder, target_length=ys_in_lens, is_training=self.training, ) elif self.encoder.overlap_chunk_cls is not None: encoder_out, encoder_out_lens = self.encoder.overlap_chunk_cls.remove_chunk( encoder_out, encoder_out_lens, chunk_outs=None ) return ( pre_acoustic_embeds, pre_token_length, predictor_alignments, predictor_alignments_len, scama_mask, ) def calc_predictor_mask2( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor = None, ys_pad_lens: torch.Tensor = None, ): # ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) # ys_in_lens = ys_pad_lens + 1 ys_out_pad, ys_in_lens = None, None encoder_out_mask = sequence_mask( encoder_out_lens, maxlen=encoder_out.size(1), dtype=encoder_out.dtype, device=encoder_out.device, )[:, None, :] mask_chunk_predictor = None if self.encoder2.overlap_chunk_cls is not None: mask_chunk_predictor = ( self.encoder2.overlap_chunk_cls.get_mask_chunk_predictor( None, device=encoder_out.device, batch_size=encoder_out.size(0) ) ) mask_shfit_chunk = self.encoder2.overlap_chunk_cls.get_mask_shfit_chunk( None, device=encoder_out.device, batch_size=encoder_out.size(0) ) encoder_out = encoder_out * mask_shfit_chunk pre_acoustic_embeds, pre_token_length, pre_alphas, _ = self.predictor2( encoder_out, ys_out_pad, encoder_out_mask, ignore_id=self.ignore_id, mask_chunk_predictor=mask_chunk_predictor, target_label_length=ys_in_lens, ) predictor_alignments, predictor_alignments_len = ( self.predictor2.gen_frame_alignments(pre_alphas, encoder_out_lens) ) scama_mask = None if ( self.encoder2.overlap_chunk_cls is not None and self.decoder_attention_chunk_type2 == "chunk" ): encoder_chunk_size = ( self.encoder2.overlap_chunk_cls.chunk_size_pad_shift_cur ) attention_chunk_center_bias = 0 attention_chunk_size = encoder_chunk_size decoder_att_look_back_factor = ( self.encoder2.overlap_chunk_cls.decoder_att_look_back_factor_cur ) mask_shift_att_chunk_decoder = ( self.encoder2.overlap_chunk_cls.get_mask_shift_att_chunk_decoder( None, device=encoder_out.device, batch_size=encoder_out.size(0) ) ) scama_mask = self.build_scama_mask_for_cross_attention_decoder_fn2( predictor_alignments=predictor_alignments, encoder_sequence_length=encoder_out_lens, chunk_size=1, encoder_chunk_size=encoder_chunk_size, attention_chunk_center_bias=attention_chunk_center_bias, attention_chunk_size=attention_chunk_size, attention_chunk_type=self.decoder_attention_chunk_type2, step=None, predictor_mask_chunk_hopping=mask_chunk_predictor, decoder_att_look_back_factor=decoder_att_look_back_factor, mask_shift_att_chunk_decoder=mask_shift_att_chunk_decoder, target_length=ys_in_lens, is_training=self.training, ) elif self.encoder2.overlap_chunk_cls is not None: encoder_out, encoder_out_lens = ( self.encoder2.overlap_chunk_cls.remove_chunk( encoder_out, encoder_out_lens, chunk_outs=None ) ) return ( pre_acoustic_embeds, pre_token_length, predictor_alignments, predictor_alignments_len, scama_mask, ) def init_beam_search( self, **kwargs, ): from funasr_detach.models.uniasr.beam_search import BeamSearchScama from funasr_detach.models.transformer.scorers.ctc import CTCPrefixScorer from funasr_detach.models.transformer.scorers.length_bonus import LengthBonus decoding_mode = kwargs.get("decoding_mode", "model1") if decoding_mode == "model1": decoder = self.decoder else: decoder = self.decoder2 # 1. Build ASR model scorers = {} if self.ctc != None: ctc = CTCPrefixScorer(ctc=self.ctc, eos=self.eos) scorers.update(ctc=ctc) token_list = kwargs.get("token_list") scorers.update( decoder=decoder, length_bonus=LengthBonus(len(token_list)), ) # 3. Build ngram model # ngram is not supported now ngram = None scorers["ngram"] = ngram weights = dict( decoder=1.0 - kwargs.get("decoding_ctc_weight", 0.0), ctc=kwargs.get("decoding_ctc_weight", 0.0), lm=kwargs.get("lm_weight", 0.0), ngram=kwargs.get("ngram_weight", 0.0), length_bonus=kwargs.get("penalty", 0.0), ) beam_search = BeamSearchScama( beam_size=kwargs.get("beam_size", 5), weights=weights, scorers=scorers, sos=self.sos, eos=self.eos, vocab_size=len(token_list), token_list=token_list, pre_beam_score_key=None if self.ctc_weight == 1.0 else "full", ) self.beam_search = beam_search def inference( self, data_in, data_lengths=None, key: list = None, tokenizer=None, frontend=None, **kwargs, ): decoding_model = kwargs.get("decoding_model", "normal") token_num_relax = kwargs.get("token_num_relax", 5) if decoding_model == "fast": decoding_ind = 0 decoding_mode = "model1" elif decoding_model == "offline": decoding_ind = 1 decoding_mode = "model2" else: decoding_ind = 0 decoding_mode = "model2" # init beamsearch if self.beam_search is None: logging.info("enable beam_search") self.init_beam_search(decoding_mode=decoding_mode, **kwargs) self.nbest = kwargs.get("nbest", 1) meta_data = {} if ( isinstance(data_in, torch.Tensor) and kwargs.get("data_type", "sound") == "fbank" ): # fbank speech, speech_lengths = data_in, data_lengths if len(speech.shape) < 3: speech = speech[None, :, :] if speech_lengths is None: speech_lengths = speech.shape[1] else: # extract fbank feats time1 = time.perf_counter() audio_sample_list = load_audio_text_image_video( data_in, fs=frontend.fs, audio_fs=kwargs.get("fs", 16000), data_type=kwargs.get("data_type", "sound"), tokenizer=tokenizer, ) time2 = time.perf_counter() meta_data["load_data"] = f"{time2 - time1:0.3f}" speech, speech_lengths = extract_fbank( audio_sample_list, data_type=kwargs.get("data_type", "sound"), frontend=frontend, ) time3 = time.perf_counter() meta_data["extract_feat"] = f"{time3 - time2:0.3f}" meta_data["batch_data_time"] = ( speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000 ) speech = speech.to(device=kwargs["device"]) speech_lengths = speech_lengths.to(device=kwargs["device"]) speech_raw = speech.clone().to(device=kwargs["device"]) # Encoder _, encoder_out, encoder_out_lens = self.encode( speech, speech_lengths, ind=decoding_ind ) if decoding_mode == "model1": predictor_outs = self.calc_predictor_mask(encoder_out, encoder_out_lens) else: encoder_out, encoder_out_lens = self.encode2( encoder_out, encoder_out_lens, speech_raw, speech_lengths, ind=decoding_ind, ) predictor_outs = self.calc_predictor_mask2(encoder_out, encoder_out_lens) scama_mask = predictor_outs[4] pre_token_length = predictor_outs[1] pre_acoustic_embeds = predictor_outs[0] maxlen = pre_token_length.sum().item() + token_num_relax minlen = max(0, pre_token_length.sum().item() - token_num_relax) # c. Passed the encoder result and the beam search nbest_hyps = self.beam_search( x=encoder_out[0], scama_mask=scama_mask, pre_acoustic_embeds=pre_acoustic_embeds, maxlenratio=0.0, minlenratio=0.0, maxlen=int(maxlen), minlen=int(minlen), ) nbest_hyps = nbest_hyps[: self.nbest] results = [] for hyp in nbest_hyps: # remove sos/eos and get results last_pos = -1 if isinstance(hyp.yseq, list): token_int = hyp.yseq[1:last_pos] else: token_int = hyp.yseq[1:last_pos].tolist() # remove blank symbol id, which is assumed to be 0 token_int = list(filter(lambda x: x != 0, token_int)) # Change integer-ids to tokens token = tokenizer.ids2tokens(token_int) text_postprocessed = tokenizer.tokens2text(token) if not hasattr(tokenizer, "bpemodel"): text_postprocessed, _ = postprocess_utils.sentence_postprocess(token) result_i = {"key": key[0], "text": text_postprocessed} results.append(result_i) return results, meta_data