#!/usr/bin/env python3 # -*- encoding: utf-8 -*- # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. # MIT License (https://opensource.org/licenses/MIT) import time import torch import logging from contextlib import contextmanager from typing import Dict, Optional, Tuple from distutils.version import LooseVersion from funasr_detach.register import tables from funasr_detach.utils import postprocess_utils from funasr_detach.utils.datadir_writer import DatadirWriter from funasr_detach.train_utils.device_funcs import force_gatherable from funasr_detach.models.transformer.scorers.ctc import CTCPrefixScorer from funasr_detach.losses.label_smoothing_loss import LabelSmoothingLoss from funasr_detach.models.transformer.scorers.length_bonus import LengthBonus from funasr_detach.models.transformer.utils.nets_utils import get_transducer_task_io from funasr_detach.utils.load_utils import load_audio_text_image_video, extract_fbank from funasr_detach.models.transducer.beam_search_transducer import BeamSearchTransducer if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"): from torch.cuda.amp import autocast else: # Nothing to do if torch<1.6.0 @contextmanager def autocast(enabled=True): yield @tables.register("model_classes", "Transducer") class Transducer(torch.nn.Module): def __init__( self, frontend: Optional[str] = None, frontend_conf: Optional[Dict] = None, specaug: Optional[str] = None, specaug_conf: Optional[Dict] = None, normalize: str = None, normalize_conf: Optional[Dict] = None, encoder: str = None, encoder_conf: Optional[Dict] = None, decoder: str = None, decoder_conf: Optional[Dict] = None, joint_network: str = None, joint_network_conf: Optional[Dict] = None, transducer_weight: float = 1.0, fastemit_lambda: float = 0.0, auxiliary_ctc_weight: float = 0.0, auxiliary_ctc_dropout_rate: float = 0.0, auxiliary_lm_loss_weight: float = 0.0, auxiliary_lm_loss_smoothing: float = 0.0, input_size: int = 80, vocab_size: int = -1, ignore_id: int = -1, blank_id: int = 0, sos: int = 1, eos: int = 2, lsm_weight: float = 0.0, length_normalized_loss: bool = False, # report_cer: bool = True, # report_wer: bool = True, # sym_space: str = "", # sym_blank: str = "", # extract_feats_in_collect_stats: bool = True, share_embedding: bool = False, # preencoder: Optional[AbsPreEncoder] = None, # postencoder: Optional[AbsPostEncoder] = None, **kwargs, ): super().__init__() if specaug is not None: specaug_class = tables.specaug_classes.get(specaug) specaug = specaug_class(**specaug_conf) if normalize is not None: normalize_class = tables.normalize_classes.get(normalize) normalize = normalize_class(**normalize_conf) encoder_class = tables.encoder_classes.get(encoder) encoder = encoder_class(input_size=input_size, **encoder_conf) encoder_output_size = encoder.output_size() decoder_class = tables.decoder_classes.get(decoder) decoder = decoder_class( vocab_size=vocab_size, **decoder_conf, ) decoder_output_size = decoder.output_size joint_network_class = tables.joint_network_classes.get(joint_network) joint_network = joint_network_class( vocab_size, encoder_output_size, decoder_output_size, **joint_network_conf, ) self.criterion_transducer = None self.error_calculator = None self.use_auxiliary_ctc = auxiliary_ctc_weight > 0 self.use_auxiliary_lm_loss = auxiliary_lm_loss_weight > 0 if self.use_auxiliary_ctc: self.ctc_lin = torch.nn.Linear(encoder.output_size(), vocab_size) self.ctc_dropout_rate = auxiliary_ctc_dropout_rate if self.use_auxiliary_lm_loss: self.lm_lin = torch.nn.Linear(decoder.output_size, vocab_size) self.lm_loss_smoothing = auxiliary_lm_loss_smoothing self.transducer_weight = transducer_weight self.fastemit_lambda = fastemit_lambda self.auxiliary_ctc_weight = auxiliary_ctc_weight self.auxiliary_lm_loss_weight = auxiliary_lm_loss_weight self.blank_id = blank_id self.sos = sos if sos is not None else vocab_size - 1 self.eos = eos if eos is not None else vocab_size - 1 self.vocab_size = vocab_size self.ignore_id = ignore_id self.frontend = frontend self.specaug = specaug self.normalize = normalize self.encoder = encoder self.decoder = decoder self.joint_network = joint_network self.criterion_att = LabelSmoothingLoss( size=vocab_size, padding_idx=ignore_id, smoothing=lsm_weight, normalize_length=length_normalized_loss, ) self.length_normalized_loss = length_normalized_loss self.beam_search = None self.ctc = None self.ctc_weight = 0.0 def forward( self, speech: torch.Tensor, speech_lengths: torch.Tensor, text: torch.Tensor, text_lengths: torch.Tensor, **kwargs, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: """Encoder + Decoder + Calc loss Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) text: (Batch, Length) text_lengths: (Batch,) """ if len(text_lengths.size()) > 1: text_lengths = text_lengths[:, 0] if len(speech_lengths.size()) > 1: speech_lengths = speech_lengths[:, 0] batch_size = speech.shape[0] # 1. Encoder encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) if ( hasattr(self.encoder, "overlap_chunk_cls") and self.encoder.overlap_chunk_cls is not None ): encoder_out, encoder_out_lens = self.encoder.overlap_chunk_cls.remove_chunk( encoder_out, encoder_out_lens, chunk_outs=None ) # 2. Transducer-related I/O preparation decoder_in, target, t_len, u_len = get_transducer_task_io( text, encoder_out_lens, ignore_id=self.ignore_id, ) # 3. Decoder self.decoder.set_device(encoder_out.device) decoder_out = self.decoder(decoder_in, u_len) # 4. Joint Network joint_out = self.joint_network( encoder_out.unsqueeze(2), decoder_out.unsqueeze(1) ) # 5. Losses loss_trans, cer_trans, wer_trans = self._calc_transducer_loss( encoder_out, joint_out, target, t_len, u_len, ) loss_ctc, loss_lm = 0.0, 0.0 if self.use_auxiliary_ctc: loss_ctc = self._calc_ctc_loss( encoder_out, target, t_len, u_len, ) if self.use_auxiliary_lm_loss: loss_lm = self._calc_lm_loss(decoder_out, target) loss = ( self.transducer_weight * loss_trans + self.auxiliary_ctc_weight * loss_ctc + self.auxiliary_lm_loss_weight * loss_lm ) stats = dict( loss=loss.detach(), loss_transducer=loss_trans.detach(), aux_ctc_loss=loss_ctc.detach() if loss_ctc > 0.0 else None, aux_lm_loss=loss_lm.detach() if loss_lm > 0.0 else None, cer_transducer=cer_trans, wer_transducer=wer_trans, ) # force_gatherable: to-device and to-tensor if scalar for DataParallel loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) return loss, stats, weight def encode( self, speech: torch.Tensor, speech_lengths: torch.Tensor, **kwargs, ) -> Tuple[torch.Tensor, torch.Tensor]: """Frontend + Encoder. Note that this method is used by asr_inference.py Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) ind: int """ with autocast(False): # Data augmentation if self.specaug is not None and self.training: speech, speech_lengths = self.specaug(speech, speech_lengths) # Normalization for feature: e.g. Global-CMVN, Utterance-CMVN if self.normalize is not None: speech, speech_lengths = self.normalize(speech, speech_lengths) # Forward encoder # feats: (Batch, Length, Dim) # -> encoder_out: (Batch, Length2, Dim2) encoder_out, encoder_out_lens, _ = self.encoder(speech, speech_lengths) intermediate_outs = None if isinstance(encoder_out, tuple): intermediate_outs = encoder_out[1] encoder_out = encoder_out[0] if intermediate_outs is not None: return (encoder_out, intermediate_outs), encoder_out_lens return encoder_out, encoder_out_lens def _calc_transducer_loss( self, encoder_out: torch.Tensor, joint_out: torch.Tensor, target: torch.Tensor, t_len: torch.Tensor, u_len: torch.Tensor, ) -> Tuple[torch.Tensor, Optional[float], Optional[float]]: """Compute Transducer loss. Args: encoder_out: Encoder output sequences. (B, T, D_enc) joint_out: Joint Network output sequences (B, T, U, D_joint) target: Target label ID sequences. (B, L) t_len: Encoder output sequences lengths. (B,) u_len: Target label ID sequences lengths. (B,) Return: loss_transducer: Transducer loss value. cer_transducer: Character error rate for Transducer. wer_transducer: Word Error Rate for Transducer. """ if self.criterion_transducer is None: try: from warp_rnnt import rnnt_loss as RNNTLoss self.criterion_transducer = RNNTLoss except ImportError: logging.error( "warp-rnnt was not installed." "Please consult the installation documentation." ) exit(1) log_probs = torch.log_softmax(joint_out, dim=-1) loss_transducer = self.criterion_transducer( log_probs, target, t_len, u_len, reduction="mean", blank=self.blank_id, fastemit_lambda=self.fastemit_lambda, gather=True, ) if not self.training and (self.report_cer or self.report_wer): if self.error_calculator is None: from funasr_detach.metrics import ( ErrorCalculatorTransducer as ErrorCalculator, ) self.error_calculator = ErrorCalculator( self.decoder, self.joint_network, self.token_list, self.sym_space, self.sym_blank, report_cer=self.report_cer, report_wer=self.report_wer, ) cer_transducer, wer_transducer = self.error_calculator( encoder_out, target, t_len ) return loss_transducer, cer_transducer, wer_transducer return loss_transducer, None, None def _calc_ctc_loss( self, encoder_out: torch.Tensor, target: torch.Tensor, t_len: torch.Tensor, u_len: torch.Tensor, ) -> torch.Tensor: """Compute CTC loss. Args: encoder_out: Encoder output sequences. (B, T, D_enc) target: Target label ID sequences. (B, L) t_len: Encoder output sequences lengths. (B,) u_len: Target label ID sequences lengths. (B,) Return: loss_ctc: CTC loss value. """ ctc_in = self.ctc_lin( torch.nn.functional.dropout(encoder_out, p=self.ctc_dropout_rate) ) ctc_in = torch.log_softmax(ctc_in.transpose(0, 1), dim=-1) target_mask = target != 0 ctc_target = target[target_mask].cpu() with torch.backends.cudnn.flags(deterministic=True): loss_ctc = torch.nn.functional.ctc_loss( ctc_in, ctc_target, t_len, u_len, zero_infinity=True, reduction="sum", ) loss_ctc /= target.size(0) return loss_ctc def _calc_lm_loss( self, decoder_out: torch.Tensor, target: torch.Tensor, ) -> torch.Tensor: """Compute LM loss. Args: decoder_out: Decoder output sequences. (B, U, D_dec) target: Target label ID sequences. (B, L) Return: loss_lm: LM loss value. """ lm_loss_in = self.lm_lin(decoder_out[:, :-1, :]).view(-1, self.vocab_size) lm_target = target.view(-1).type(torch.int64) with torch.no_grad(): true_dist = lm_loss_in.clone() true_dist.fill_(self.lm_loss_smoothing / (self.vocab_size - 1)) # Ignore blank ID (0) ignore = lm_target == 0 lm_target = lm_target.masked_fill(ignore, 0) true_dist.scatter_(1, lm_target.unsqueeze(1), (1 - self.lm_loss_smoothing)) loss_lm = torch.nn.functional.kl_div( torch.log_softmax(lm_loss_in, dim=1), true_dist, reduction="none", ) loss_lm = loss_lm.masked_fill(ignore.unsqueeze(1), 0).sum() / decoder_out.size( 0 ) return loss_lm def init_beam_search( self, **kwargs, ): # 1. Build ASR model scorers = {} if self.ctc != None: ctc = CTCPrefixScorer(ctc=self.ctc, eos=self.eos) scorers.update(ctc=ctc) token_list = kwargs.get("token_list") scorers.update( length_bonus=LengthBonus(len(token_list)), ) # 3. Build ngram model # ngram is not supported now ngram = None scorers["ngram"] = ngram beam_search = BeamSearchTransducer( self.decoder, self.joint_network, kwargs.get("beam_size", 2), nbest=1, ) # beam_search.to(device=kwargs.get("device", "cpu"), dtype=getattr(torch, kwargs.get("dtype", "float32"))).eval() # for scorer in scorers.values(): # if isinstance(scorer, torch.nn.Module): # scorer.to(device=kwargs.get("device", "cpu"), dtype=getattr(torch, kwargs.get("dtype", "float32"))).eval() self.beam_search = beam_search def inference( self, data_in: list, data_lengths: list = None, key: list = None, tokenizer=None, **kwargs, ): if kwargs.get("batch_size", 1) > 1: raise NotImplementedError("batch decoding is not implemented") # init beamsearch is_use_ctc = ( kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None ) is_use_lm = ( kwargs.get("lm_weight", 0.0) > 0.00001 and kwargs.get("lm_file", None) is not None ) # if self.beam_search is None and (is_use_lm or is_use_ctc): logging.info("enable beam_search") self.init_beam_search(**kwargs) self.nbest = kwargs.get("nbest", 1) meta_data = {} # extract fbank feats time1 = time.perf_counter() audio_sample_list = load_audio_text_image_video( data_in, fs=self.frontend.fs, audio_fs=kwargs.get("fs", 16000) ) time2 = time.perf_counter() meta_data["load_data"] = f"{time2 - time1:0.3f}" speech, speech_lengths = extract_fbank( audio_sample_list, data_type=kwargs.get("data_type", "sound"), frontend=self.frontend, ) time3 = time.perf_counter() meta_data["extract_feat"] = f"{time3 - time2:0.3f}" meta_data["batch_data_time"] = ( speech_lengths.sum().item() * self.frontend.frame_shift * self.frontend.lfr_n / 1000 ) speech = speech.to(device=kwargs["device"]) speech_lengths = speech_lengths.to(device=kwargs["device"]) # Encoder encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) if isinstance(encoder_out, tuple): encoder_out = encoder_out[0] # c. Passed the encoder result and the beam search nbest_hyps = self.beam_search(encoder_out[0], is_final=True) nbest_hyps = nbest_hyps[: self.nbest] results = [] b, n, d = encoder_out.size() for i in range(b): for nbest_idx, hyp in enumerate(nbest_hyps): ibest_writer = None if kwargs.get("output_dir") is not None: if not hasattr(self, "writer"): self.writer = DatadirWriter(kwargs.get("output_dir")) ibest_writer = self.writer[f"{nbest_idx + 1}best_recog"] # remove sos/eos and get results last_pos = -1 if isinstance(hyp.yseq, list): token_int = hyp.yseq # [1:last_pos] else: token_int = hyp.yseq # [1:last_pos].tolist() # remove blank symbol id, which is assumed to be 0 token_int = list( filter( lambda x: x != self.eos and x != self.sos and x != self.blank_id, token_int, ) ) # Change integer-ids to tokens token = tokenizer.ids2tokens(token_int) text = tokenizer.tokens2text(token) text_postprocessed, _ = postprocess_utils.sentence_postprocess(token) result_i = { "key": key[i], "token": token, "text": text, "text_postprocessed": text_postprocessed, } results.append(result_i) if ibest_writer is not None: ibest_writer["token"][key[i]] = " ".join(token) ibest_writer["text"][key[i]] = text ibest_writer["text_postprocessed"][key[i]] = text_postprocessed return results, meta_data