#!/usr/bin/env python3 # -*- encoding: utf-8 -*- # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. # MIT License (https://opensource.org/licenses/MIT) import time import torch import torch.nn as nn import torch.functional as F import logging from typing import Dict, Tuple from contextlib import contextmanager from distutils.version import LooseVersion from funasr_detach.register import tables from funasr_detach.models.ctc.ctc import CTC from funasr_detach.utils import postprocess_utils from funasr_detach.metrics.compute_acc import th_accuracy from funasr_detach.utils.datadir_writer import DatadirWriter from funasr_detach.models.paraformer.model import Paraformer from funasr_detach.models.paraformer.search import Hypothesis from funasr_detach.models.paraformer.cif_predictor import mae_loss from funasr_detach.train_utils.device_funcs import force_gatherable from funasr_detach.losses.label_smoothing_loss import LabelSmoothingLoss from funasr_detach.models.transformer.utils.add_sos_eos import add_sos_eos from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask, pad_list from funasr_detach.utils.load_utils import load_audio_text_image_video, extract_fbank from funasr_detach.models.scama.utils import sequence_mask if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"): from torch.cuda.amp import autocast else: # Nothing to do if torch<1.6.0 @contextmanager def autocast(enabled=True): yield @tables.register("model_classes", "SCAMA") class SCAMA(nn.Module): """ Author: Shiliang Zhang, Zhifu Gao, Haoneng Luo, Ming Lei, Jie Gao, Zhijie Yan, Lei Xie SCAMA: Streaming chunk-aware multihead attention for online end-to-end speech recognition https://arxiv.org/abs/2006.01712 """ def __init__( self, specaug: str = None, specaug_conf: dict = None, normalize: str = None, normalize_conf: dict = None, encoder: str = None, encoder_conf: dict = None, decoder: str = None, decoder_conf: dict = None, ctc: str = None, ctc_conf: dict = None, ctc_weight: float = 0.5, predictor: str = None, predictor_conf: dict = None, predictor_bias: int = 0, predictor_weight: float = 0.0, input_size: int = 80, vocab_size: int = -1, ignore_id: int = -1, blank_id: int = 0, sos: int = 1, eos: int = 2, lsm_weight: float = 0.0, length_normalized_loss: bool = False, share_embedding: bool = False, **kwargs, ): super().__init__() if specaug is not None: specaug_class = tables.specaug_classes.get(specaug) specaug = specaug_class(**specaug_conf) if normalize is not None: normalize_class = tables.normalize_classes.get(normalize) normalize = normalize_class(**normalize_conf) encoder_class = tables.encoder_classes.get(encoder) encoder = encoder_class(input_size=input_size, **encoder_conf) encoder_output_size = encoder.output_size() decoder_class = tables.decoder_classes.get(decoder) decoder = decoder_class( vocab_size=vocab_size, encoder_output_size=encoder_output_size, **decoder_conf, ) if ctc_weight > 0.0: if ctc_conf is None: ctc_conf = {} ctc = CTC( odim=vocab_size, encoder_output_size=encoder_output_size, **ctc_conf ) predictor_class = tables.predictor_classes.get(predictor) predictor = predictor_class(**predictor_conf) # note that eos is the same as sos (equivalent ID) self.blank_id = blank_id self.sos = sos if sos is not None else vocab_size - 1 self.eos = eos if eos is not None else vocab_size - 1 self.vocab_size = vocab_size self.ignore_id = ignore_id self.ctc_weight = ctc_weight self.specaug = specaug self.normalize = normalize self.encoder = encoder if ctc_weight == 1.0: self.decoder = None else: self.decoder = decoder self.criterion_att = LabelSmoothingLoss( size=vocab_size, padding_idx=ignore_id, smoothing=lsm_weight, normalize_length=length_normalized_loss, ) if ctc_weight == 0.0: self.ctc = None else: self.ctc = ctc self.predictor = predictor self.predictor_weight = predictor_weight self.predictor_bias = predictor_bias self.criterion_pre = mae_loss(normalize_length=length_normalized_loss) self.share_embedding = share_embedding if self.share_embedding: self.decoder.embed = None self.length_normalized_loss = length_normalized_loss self.beam_search = None self.error_calculator = None if self.encoder.overlap_chunk_cls is not None: from funasr_detach.models.scama.chunk_utilis import ( build_scama_mask_for_cross_attention_decoder, ) self.build_scama_mask_for_cross_attention_decoder_fn = ( build_scama_mask_for_cross_attention_decoder ) self.decoder_attention_chunk_type = kwargs.get( "decoder_attention_chunk_type", "chunk" ) def forward( self, speech: torch.Tensor, speech_lengths: torch.Tensor, text: torch.Tensor, text_lengths: torch.Tensor, **kwargs, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: """Encoder + Decoder + Calc loss Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) text: (Batch, Length) text_lengths: (Batch,) """ decoding_ind = kwargs.get("decoding_ind") if len(text_lengths.size()) > 1: text_lengths = text_lengths[:, 0] if len(speech_lengths.size()) > 1: speech_lengths = speech_lengths[:, 0] batch_size = speech.shape[0] # Encoder ind = self.encoder.overlap_chunk_cls.random_choice(self.training, decoding_ind) encoder_out, encoder_out_lens = self.encode(speech, speech_lengths, ind=ind) loss_ctc, cer_ctc = None, None loss_pre = None stats = dict() # decoder: CTC branch if self.ctc_weight > 0.0: encoder_out_ctc, encoder_out_lens_ctc = ( self.encoder.overlap_chunk_cls.remove_chunk( encoder_out, encoder_out_lens, chunk_outs=None ) ) loss_ctc, cer_ctc = self._calc_ctc_loss( encoder_out_ctc, encoder_out_lens_ctc, text, text_lengths ) # Collect CTC branch stats stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None stats["cer_ctc"] = cer_ctc # decoder: Attention decoder branch loss_att, acc_att, cer_att, wer_att, loss_pre = self._calc_att_predictor_loss( encoder_out, encoder_out_lens, text, text_lengths ) # 3. CTC-Att loss definition if self.ctc_weight == 0.0: loss = loss_att + loss_pre * self.predictor_weight else: loss = ( self.ctc_weight * loss_ctc + (1 - self.ctc_weight) * loss_att + loss_pre * self.predictor_weight ) # Collect Attn branch stats stats["loss_att"] = loss_att.detach() if loss_att is not None else None stats["acc"] = acc_att stats["cer"] = cer_att stats["wer"] = wer_att stats["loss_pre"] = loss_pre.detach().cpu() if loss_pre is not None else None stats["loss"] = torch.clone(loss.detach()) # force_gatherable: to-device and to-tensor if scalar for DataParallel if self.length_normalized_loss: batch_size = (text_lengths + self.predictor_bias).sum() loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) return loss, stats, weight def encode( self, speech: torch.Tensor, speech_lengths: torch.Tensor, **kwargs, ) -> Tuple[torch.Tensor, torch.Tensor]: """Encoder. Note that this method is used by asr_inference.py Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) ind: int """ with autocast(False): # Data augmentation if self.specaug is not None and self.training: speech, speech_lengths = self.specaug(speech, speech_lengths) # Normalization for feature: e.g. Global-CMVN, Utterance-CMVN if self.normalize is not None: speech, speech_lengths = self.normalize(speech, speech_lengths) # Forward encoder encoder_out, encoder_out_lens, _ = self.encoder(speech, speech_lengths) if isinstance(encoder_out, tuple): encoder_out = encoder_out[0] return encoder_out, encoder_out_lens def encode_chunk( self, speech: torch.Tensor, speech_lengths: torch.Tensor, cache: dict = None, **kwargs, ) -> Tuple[torch.Tensor, torch.Tensor]: """Frontend + Encoder. Note that this method is used by asr_inference.py Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) ind: int """ with autocast(False): # Data augmentation if self.specaug is not None and self.training: speech, speech_lengths = self.specaug(speech, speech_lengths) # Normalization for feature: e.g. Global-CMVN, Utterance-CMVN if self.normalize is not None: speech, speech_lengths = self.normalize(speech, speech_lengths) # Forward encoder encoder_out, encoder_out_lens, _ = self.encoder.forward_chunk( speech, speech_lengths, cache=cache["encoder"] ) if isinstance(encoder_out, tuple): encoder_out = encoder_out[0] return encoder_out, torch.tensor([encoder_out.size(1)]) def calc_predictor_chunk(self, encoder_out, encoder_out_lens, cache=None, **kwargs): is_final = kwargs.get("is_final", False) return self.predictor.forward_chunk( encoder_out, cache["encoder"], is_final=is_final ) def _calc_att_predictor_loss( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, ): ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) ys_in_lens = ys_pad_lens + 1 encoder_out_mask = sequence_mask( encoder_out_lens, maxlen=encoder_out.size(1), dtype=encoder_out.dtype, device=encoder_out.device, )[:, None, :] mask_chunk_predictor = None if self.encoder.overlap_chunk_cls is not None: mask_chunk_predictor = ( self.encoder.overlap_chunk_cls.get_mask_chunk_predictor( None, device=encoder_out.device, batch_size=encoder_out.size(0) ) ) mask_shfit_chunk = self.encoder.overlap_chunk_cls.get_mask_shfit_chunk( None, device=encoder_out.device, batch_size=encoder_out.size(0) ) encoder_out = encoder_out * mask_shfit_chunk pre_acoustic_embeds, pre_token_length, pre_alphas, _ = self.predictor( encoder_out, ys_out_pad, encoder_out_mask, ignore_id=self.ignore_id, mask_chunk_predictor=mask_chunk_predictor, target_label_length=ys_in_lens, ) predictor_alignments, predictor_alignments_len = ( self.predictor.gen_frame_alignments(pre_alphas, encoder_out_lens) ) encoder_chunk_size = self.encoder.overlap_chunk_cls.chunk_size_pad_shift_cur attention_chunk_center_bias = 0 attention_chunk_size = encoder_chunk_size decoder_att_look_back_factor = ( self.encoder.overlap_chunk_cls.decoder_att_look_back_factor_cur ) mask_shift_att_chunk_decoder = ( self.encoder.overlap_chunk_cls.get_mask_shift_att_chunk_decoder( None, device=encoder_out.device, batch_size=encoder_out.size(0) ) ) scama_mask = self.build_scama_mask_for_cross_attention_decoder_fn( predictor_alignments=predictor_alignments, encoder_sequence_length=encoder_out_lens, chunk_size=1, encoder_chunk_size=encoder_chunk_size, attention_chunk_center_bias=attention_chunk_center_bias, attention_chunk_size=attention_chunk_size, attention_chunk_type=self.decoder_attention_chunk_type, step=None, predictor_mask_chunk_hopping=mask_chunk_predictor, decoder_att_look_back_factor=decoder_att_look_back_factor, mask_shift_att_chunk_decoder=mask_shift_att_chunk_decoder, target_length=ys_in_lens, is_training=self.training, ) # try: # 1. Forward decoder decoder_out, _ = self.decoder( encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens, chunk_mask=scama_mask, pre_acoustic_embeds=pre_acoustic_embeds, ) # 2. Compute attention loss loss_att = self.criterion_att(decoder_out, ys_out_pad) acc_att = th_accuracy( decoder_out.view(-1, self.vocab_size), ys_out_pad, ignore_label=self.ignore_id, ) # predictor loss loss_pre = self.criterion_pre( ys_in_lens.type_as(pre_token_length), pre_token_length ) # Compute cer/wer using attention-decoder if self.training or self.error_calculator is None: cer_att, wer_att = None, None else: ys_hat = decoder_out.argmax(dim=-1) cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu()) return loss_att, acc_att, cer_att, wer_att, loss_pre def calc_predictor_mask( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor = None, ys_pad_lens: torch.Tensor = None, ): # ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) # ys_in_lens = ys_pad_lens + 1 ys_out_pad, ys_in_lens = None, None encoder_out_mask = sequence_mask( encoder_out_lens, maxlen=encoder_out.size(1), dtype=encoder_out.dtype, device=encoder_out.device, )[:, None, :] mask_chunk_predictor = None mask_chunk_predictor = self.encoder.overlap_chunk_cls.get_mask_chunk_predictor( None, device=encoder_out.device, batch_size=encoder_out.size(0) ) mask_shfit_chunk = self.encoder.overlap_chunk_cls.get_mask_shfit_chunk( None, device=encoder_out.device, batch_size=encoder_out.size(0) ) encoder_out = encoder_out * mask_shfit_chunk pre_acoustic_embeds, pre_token_length, pre_alphas, _ = self.predictor( encoder_out, ys_out_pad, encoder_out_mask, ignore_id=self.ignore_id, mask_chunk_predictor=mask_chunk_predictor, target_label_length=ys_in_lens, ) predictor_alignments, predictor_alignments_len = ( self.predictor.gen_frame_alignments(pre_alphas, encoder_out_lens) ) encoder_chunk_size = self.encoder.overlap_chunk_cls.chunk_size_pad_shift_cur attention_chunk_center_bias = 0 attention_chunk_size = encoder_chunk_size decoder_att_look_back_factor = ( self.encoder.overlap_chunk_cls.decoder_att_look_back_factor_cur ) mask_shift_att_chunk_decoder = ( self.encoder.overlap_chunk_cls.get_mask_shift_att_chunk_decoder( None, device=encoder_out.device, batch_size=encoder_out.size(0) ) ) scama_mask = self.build_scama_mask_for_cross_attention_decoder_fn( predictor_alignments=predictor_alignments, encoder_sequence_length=encoder_out_lens, chunk_size=1, encoder_chunk_size=encoder_chunk_size, attention_chunk_center_bias=attention_chunk_center_bias, attention_chunk_size=attention_chunk_size, attention_chunk_type=self.decoder_attention_chunk_type, step=None, predictor_mask_chunk_hopping=mask_chunk_predictor, decoder_att_look_back_factor=decoder_att_look_back_factor, mask_shift_att_chunk_decoder=mask_shift_att_chunk_decoder, target_length=ys_in_lens, is_training=self.training, ) return ( pre_acoustic_embeds, pre_token_length, predictor_alignments, predictor_alignments_len, scama_mask, ) def init_beam_search( self, **kwargs, ): from funasr_detach.models.scama.beam_search import BeamSearchScamaStreaming from funasr_detach.models.transformer.scorers.ctc import CTCPrefixScorer from funasr_detach.models.transformer.scorers.length_bonus import LengthBonus # 1. Build ASR model scorers = {} if self.ctc != None: ctc = CTCPrefixScorer(ctc=self.ctc, eos=self.eos) scorers.update(ctc=ctc) token_list = kwargs.get("token_list") scorers.update( decoder=self.decoder, length_bonus=LengthBonus(len(token_list)), ) # 3. Build ngram model # ngram is not supported now ngram = None scorers["ngram"] = ngram weights = dict( decoder=1.0 - kwargs.get("decoding_ctc_weight", 0.0), ctc=kwargs.get("decoding_ctc_weight", 0.0), lm=kwargs.get("lm_weight", 0.0), ngram=kwargs.get("ngram_weight", 0.0), length_bonus=kwargs.get("penalty", 0.0), ) beam_search = BeamSearchScamaStreaming( beam_size=kwargs.get("beam_size", 2), weights=weights, scorers=scorers, sos=self.sos, eos=self.eos, vocab_size=len(token_list), token_list=token_list, pre_beam_score_key=None if self.ctc_weight == 1.0 else "full", ) # beam_search.to(device=kwargs.get("device", "cpu"), dtype=getattr(torch, kwargs.get("dtype", "float32"))).eval() # for scorer in scorers.values(): # if isinstance(scorer, torch.nn.Module): # scorer.to(device=kwargs.get("device", "cpu"), dtype=getattr(torch, kwargs.get("dtype", "float32"))).eval() self.beam_search = beam_search def generate_chunk( self, speech, speech_lengths=None, key: list = None, tokenizer=None, frontend=None, **kwargs, ): cache = kwargs.get("cache", {}) speech = speech.to(device=kwargs["device"]) speech_lengths = speech_lengths.to(device=kwargs["device"]) # Encoder encoder_out, encoder_out_lens = self.encode_chunk( speech, speech_lengths, cache=cache, is_final=kwargs.get("is_final", False) ) if isinstance(encoder_out, tuple): encoder_out = encoder_out[0] if "running_hyps" not in cache: running_hyps = self.beam_search.init_hyp(encoder_out) cache["running_hyps"] = running_hyps # predictor predictor_outs = self.calc_predictor_chunk( encoder_out, encoder_out_lens, cache=cache, is_final=kwargs.get("is_final", False), ) pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = ( predictor_outs[0], predictor_outs[1], predictor_outs[2], predictor_outs[3], ) pre_token_length = pre_token_length.round().long() if torch.max(pre_token_length) < 1: return [] maxlen = minlen = pre_token_length if kwargs.get("is_final", False): maxlen += kwargs.get("token_num_relax", 5) minlen = max(0, minlen - kwargs.get("token_num_relax", 5)) # c. Passed the encoder result and the beam search nbest_hyps = self.beam_search( x=encoder_out[0], scama_mask=None, pre_acoustic_embeds=pre_acoustic_embeds, maxlen=int(maxlen), minlen=int(minlen), cache=cache, ) cache["running_hyps"] = nbest_hyps nbest_hyps = nbest_hyps[: self.nbest] results = [] for hyp in nbest_hyps: # assert isinstance(hyp, (Hypothesis)), type(hyp) # remove sos/eos and get results last_pos = -1 if isinstance(hyp.yseq, list): token_int = hyp.yseq[1:last_pos] else: token_int = hyp.yseq[1:last_pos].tolist() # remove blank symbol id, which is assumed to be 0 token_int = list( filter( lambda x: x != self.eos and x != self.sos and x != self.blank_id, token_int, ) ) # Change integer-ids to tokens token = tokenizer.ids2tokens(token_int) # text = tokenizer.tokens2text(token) result_i = token results.extend(result_i) return results def init_cache(self, cache: dict = {}, **kwargs): device = kwargs.get("device", "cuda") chunk_size = kwargs.get("chunk_size", [0, 10, 5]) encoder_chunk_look_back = kwargs.get("encoder_chunk_look_back", 0) decoder_chunk_look_back = kwargs.get("decoder_chunk_look_back", 0) batch_size = 1 enc_output_size = kwargs["encoder_conf"]["output_size"] feats_dims = ( kwargs["frontend_conf"]["n_mels"] * kwargs["frontend_conf"]["lfr_m"] ) cache_encoder = { "start_idx": 0, "cif_hidden": torch.zeros((batch_size, 1, enc_output_size)).to( device=device ), "cif_alphas": torch.zeros((batch_size, 1)).to(device=device), "chunk_size": chunk_size, "encoder_chunk_look_back": encoder_chunk_look_back, "last_chunk": False, "opt": None, "feats": torch.zeros( (batch_size, chunk_size[0] + chunk_size[2], feats_dims) ).to(device=device), "tail_chunk": False, } cache["encoder"] = cache_encoder cache_decoder = { "decode_fsmn": None, "decoder_chunk_look_back": decoder_chunk_look_back, "opt": None, "chunk_size": chunk_size, } cache["decoder"] = cache_decoder cache["frontend"] = {} cache["prev_samples"] = torch.empty(0).to(device=device) return cache def inference( self, data_in, data_lengths=None, key: list = None, tokenizer=None, frontend=None, cache: dict = {}, **kwargs, ): # init beamsearch is_use_ctc = ( kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None ) is_use_lm = ( kwargs.get("lm_weight", 0.0) > 0.00001 and kwargs.get("lm_file", None) is not None ) if self.beam_search is None: logging.info("enable beam_search") self.init_beam_search(**kwargs) self.nbest = kwargs.get("nbest", 1) if len(cache) == 0: self.init_cache(cache, **kwargs) meta_data = {} chunk_size = kwargs.get("chunk_size", [0, 10, 5]) chunk_stride_samples = int(chunk_size[1] * 960) # 600ms time1 = time.perf_counter() cfg = {"is_final": kwargs.get("is_final", False)} audio_sample_list = load_audio_text_image_video( data_in, fs=frontend.fs, audio_fs=kwargs.get("fs", 16000), data_type=kwargs.get("data_type", "sound"), tokenizer=tokenizer, cache=cfg, ) _is_final = cfg["is_final"] # if data_in is a file or url, set is_final=True time2 = time.perf_counter() meta_data["load_data"] = f"{time2 - time1:0.3f}" assert len(audio_sample_list) == 1, "batch_size must be set 1" audio_sample = torch.cat((cache["prev_samples"], audio_sample_list[0])) n = int(len(audio_sample) // chunk_stride_samples + int(_is_final)) m = int(len(audio_sample) % chunk_stride_samples * (1 - int(_is_final))) tokens = [] for i in range(n): kwargs["is_final"] = _is_final and i == n - 1 audio_sample_i = audio_sample[ i * chunk_stride_samples : (i + 1) * chunk_stride_samples ] # extract fbank feats speech, speech_lengths = extract_fbank( [audio_sample_i], data_type=kwargs.get("data_type", "sound"), frontend=frontend, cache=cache["frontend"], is_final=kwargs["is_final"], ) time3 = time.perf_counter() meta_data["extract_feat"] = f"{time3 - time2:0.3f}" meta_data["batch_data_time"] = ( speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000 ) tokens_i = self.generate_chunk( speech, speech_lengths, key=key, tokenizer=tokenizer, cache=cache, frontend=frontend, **kwargs, ) tokens.extend(tokens_i) text_postprocessed, _ = postprocess_utils.sentence_postprocess(tokens) result_i = {"key": key[0], "text": text_postprocessed} result = [result_i] cache["prev_samples"] = audio_sample[:-m] if _is_final: self.init_cache(cache, **kwargs) if kwargs.get("output_dir"): writer = DatadirWriter(kwargs.get("output_dir")) ibest_writer = writer[f"{1}best_recog"] ibest_writer["token"][key[0]] = " ".join(tokens) ibest_writer["text"][key[0]] = text_postprocessed return result, meta_data