File size: 9,966 Bytes
0102e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
from contextlib import contextmanager
from distutils.version import LooseVersion
from typing import Dict, List, Tuple, Optional

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

from funasr_detach.frontends.wav_frontend import WavFrontendMel23
from funasr_detach.models.eend.encoder import EENDOLATransformerEncoder
from funasr_detach.models.eend.encoder_decoder_attractor import EncoderDecoderAttractor
from funasr_detach.models.eend.utils.losses import (
    standard_loss,
    cal_power_loss,
    fast_batch_pit_n_speaker_loss,
)
from funasr_detach.models.eend.utils.power import create_powerlabel
from funasr_detach.models.eend.utils.power import generate_mapping_dict
from funasr_detach.train_utils.device_funcs import force_gatherable

if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
    pass
else:
    # Nothing to do if torch<1.6.0
    @contextmanager
    def autocast(enabled=True):
        yield


def pad_attractor(att, max_n_speakers):
    C, D = att.shape
    if C < max_n_speakers:
        att = torch.cat(
            [att, torch.zeros(max_n_speakers - C, D).to(torch.float32).to(att.device)],
            dim=0,
        )
    return att


def pad_labels(ts, out_size):
    for i, t in enumerate(ts):
        if t.shape[1] < out_size:
            ts[i] = F.pad(
                t, (0, out_size - t.shape[1], 0, 0), mode="constant", value=0.0
            )
    return ts


def pad_results(ys, out_size):
    ys_padded = []
    for i, y in enumerate(ys):
        if y.shape[1] < out_size:
            ys_padded.append(
                torch.cat(
                    [
                        y,
                        torch.zeros(y.shape[0], out_size - y.shape[1])
                        .to(torch.float32)
                        .to(y.device),
                    ],
                    dim=1,
                )
            )
        else:
            ys_padded.append(y)
    return ys_padded


class DiarEENDOLAModel(nn.Module):
    """EEND-OLA diarization model"""

    def __init__(
        self,
        frontend: Optional[WavFrontendMel23],
        encoder: EENDOLATransformerEncoder,
        encoder_decoder_attractor: EncoderDecoderAttractor,
        n_units: int = 256,
        max_n_speaker: int = 8,
        attractor_loss_weight: float = 1.0,
        mapping_dict=None,
        **kwargs,
    ):
        super().__init__()
        self.frontend = frontend
        self.enc = encoder
        self.encoder_decoder_attractor = encoder_decoder_attractor
        self.attractor_loss_weight = attractor_loss_weight
        self.max_n_speaker = max_n_speaker
        if mapping_dict is None:
            mapping_dict = generate_mapping_dict(max_speaker_num=self.max_n_speaker)
            self.mapping_dict = mapping_dict
        # PostNet
        self.postnet = nn.LSTM(self.max_n_speaker, n_units, 1, batch_first=True)
        self.output_layer = nn.Linear(n_units, mapping_dict["oov"] + 1)

    def forward_encoder(self, xs, ilens):
        xs = nn.utils.rnn.pad_sequence(xs, batch_first=True, padding_value=-1)
        pad_shape = xs.shape
        xs_mask = [torch.ones(ilen).to(xs.device) for ilen in ilens]
        xs_mask = torch.nn.utils.rnn.pad_sequence(
            xs_mask, batch_first=True, padding_value=0
        ).unsqueeze(-2)
        emb = self.enc(xs, xs_mask)
        emb = torch.split(emb.view(pad_shape[0], pad_shape[1], -1), 1, dim=0)
        emb = [e[0][:ilen] for e, ilen in zip(emb, ilens)]
        return emb

    def forward_post_net(self, logits, ilens):
        maxlen = torch.max(ilens).to(torch.int).item()
        logits = nn.utils.rnn.pad_sequence(logits, batch_first=True, padding_value=-1)
        logits = nn.utils.rnn.pack_padded_sequence(
            logits, ilens.cpu().to(torch.int64), batch_first=True, enforce_sorted=False
        )
        outputs, (_, _) = self.postnet(logits)
        outputs = nn.utils.rnn.pad_packed_sequence(
            outputs, batch_first=True, padding_value=-1, total_length=maxlen
        )[0]
        outputs = [
            output[: ilens[i].to(torch.int).item()] for i, output in enumerate(outputs)
        ]
        outputs = [self.output_layer(output) for output in outputs]
        return outputs

    def forward(
        self,
        speech: List[torch.Tensor],
        speaker_labels: List[torch.Tensor],
        orders: torch.Tensor,
    ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:

        # Check that batch_size is unified
        assert len(speech) == len(speaker_labels), (len(speech), len(speaker_labels))
        speech_lengths = torch.tensor([len(sph) for sph in speech]).to(torch.int64)
        speaker_labels_lengths = torch.tensor(
            [spk.shape[-1] for spk in speaker_labels]
        ).to(torch.int64)
        batch_size = len(speech)

        # Encoder
        encoder_out = self.forward_encoder(speech, speech_lengths)

        # Encoder-decoder attractor
        attractor_loss, attractors = self.encoder_decoder_attractor(
            [e[order] for e, order in zip(encoder_out, orders)], speaker_labels_lengths
        )
        speaker_logits = [
            torch.matmul(e, att.permute(1, 0))
            for e, att in zip(encoder_out, attractors)
        ]

        # pit loss
        pit_speaker_labels = fast_batch_pit_n_speaker_loss(
            speaker_logits, speaker_labels
        )
        pit_loss = standard_loss(speaker_logits, pit_speaker_labels)

        # pse loss
        with torch.no_grad():
            power_ts = [
                create_powerlabel(
                    label.cpu().numpy(), self.mapping_dict, self.max_n_speaker
                ).to(encoder_out[0].device, non_blocking=True)
                for label in pit_speaker_labels
            ]
        pad_attractors = [pad_attractor(att, self.max_n_speaker) for att in attractors]
        pse_speaker_logits = [
            torch.matmul(e, pad_att.permute(1, 0))
            for e, pad_att in zip(encoder_out, pad_attractors)
        ]
        pse_speaker_logits = self.forward_post_net(pse_speaker_logits, speech_lengths)
        pse_loss = cal_power_loss(pse_speaker_logits, power_ts)

        loss = pse_loss + pit_loss + self.attractor_loss_weight * attractor_loss

        stats = dict()
        stats["pse_loss"] = pse_loss.detach()
        stats["pit_loss"] = pit_loss.detach()
        stats["attractor_loss"] = attractor_loss.detach()
        stats["batch_size"] = batch_size

        # Collect total loss stats
        stats["loss"] = torch.clone(loss.detach())

        # force_gatherable: to-device and to-tensor if scalar for DataParallel
        loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
        return loss, stats, weight

    def estimate_sequential(
        self,
        speech: torch.Tensor,
        n_speakers: int = None,
        shuffle: bool = True,
        threshold: float = 0.5,
        **kwargs,
    ):
        speech_lengths = torch.tensor([len(sph) for sph in speech]).to(torch.int64)
        emb = self.forward_encoder(speech, speech_lengths)
        if shuffle:
            orders = [np.arange(e.shape[0]) for e in emb]
            for order in orders:
                np.random.shuffle(order)
            attractors, probs = self.encoder_decoder_attractor.estimate(
                [
                    e[torch.from_numpy(order).to(torch.long).to(speech[0].device)]
                    for e, order in zip(emb, orders)
                ]
            )
        else:
            attractors, probs = self.encoder_decoder_attractor.estimate(emb)
        attractors_active = []
        for p, att, e in zip(probs, attractors, emb):
            if n_speakers and n_speakers >= 0:
                att = att[:n_speakers,]
                attractors_active.append(att)
            elif threshold is not None:
                silence = torch.nonzero(p < threshold)[0]
                n_spk = silence[0] if silence.size else None
                att = att[:n_spk,]
                attractors_active.append(att)
            else:
                NotImplementedError("n_speakers or threshold has to be given.")
        raw_n_speakers = [att.shape[0] for att in attractors_active]
        attractors = [
            (
                pad_attractor(att, self.max_n_speaker)
                if att.shape[0] <= self.max_n_speaker
                else att[: self.max_n_speaker]
            )
            for att in attractors_active
        ]
        ys = [torch.matmul(e, att.permute(1, 0)) for e, att in zip(emb, attractors)]
        logits = self.forward_post_net(ys, speech_lengths)
        ys = [
            self.recover_y_from_powerlabel(logit, raw_n_speaker)
            for logit, raw_n_speaker in zip(logits, raw_n_speakers)
        ]

        return ys, emb, attractors, raw_n_speakers

    def recover_y_from_powerlabel(self, logit, n_speaker):
        pred = torch.argmax(torch.softmax(logit, dim=-1), dim=-1)
        oov_index = torch.where(pred == self.mapping_dict["oov"])[0]
        for i in oov_index:
            if i > 0:
                pred[i] = pred[i - 1]
            else:
                pred[i] = 0
        pred = [self.inv_mapping_func(i) for i in pred]
        decisions = [bin(num)[2:].zfill(self.max_n_speaker)[::-1] for num in pred]
        decisions = (
            torch.from_numpy(
                np.stack([np.array([int(i) for i in dec]) for dec in decisions], axis=0)
            )
            .to(logit.device)
            .to(torch.float32)
        )
        decisions = decisions[:, :n_speaker]
        return decisions

    def inv_mapping_func(self, label):

        if not isinstance(label, int):
            label = int(label)
        if label in self.mapping_dict["label2dec"].keys():
            num = self.mapping_dict["label2dec"][label]
        else:
            num = -1
        return num

    def collect_feats(self, **batch: torch.Tensor) -> Dict[str, torch.Tensor]:
        pass