Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,422 Bytes
dd217c7 a674527 1a19e0f dd217c7 a674527 dd217c7 a674527 4dab15f 1a19e0f ab9dfa8 dd217c7 4dab15f dd217c7 1a19e0f dd217c7 4dab15f 1a19e0f dd217c7 1a19e0f 61085f9 1a19e0f 5d2c622 1a19e0f d37849f 1a19e0f d37849f 1a19e0f d37849f 1a19e0f d37849f 1a19e0f dd217c7 1a19e0f dd217c7 aeff822 4dab15f aeff822 e258e7d ef90edf 6b82a0e 0b61e94 9766167 0b61e94 083a2d9 0b61e94 ef90edf dd217c7 4115638 4dab15f dd217c7 4dab15f 74dee3d dd217c7 4dab15f dd217c7 4dab15f dd217c7 4dab15f dd217c7 1a19e0f 4dab15f dd217c7 4dab15f 1a19e0f 4dab15f dd217c7 4dab15f dd217c7 4dab15f dd217c7 aeff822 1a19e0f aeff822 1a19e0f aeff822 dd217c7 1a19e0f dd217c7 4dab15f dd217c7 4dab15f dd217c7 43bc5dc a674527 4dab15f dd217c7 4dab15f dd217c7 4dab15f dd217c7 43bc5dc dd217c7 48c079f dd217c7 48c079f dd217c7 a674527 b4752cf 4115638 dd217c7 a674527 dd217c7 a674527 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
# F5-TTS: A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching
[](https://github.com/SWivid/F5-TTS)
[](https://arxiv.org/abs/2410.06885)
[](https://swivid.github.io/F5-TTS/)
[](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
[](https://modelscope.cn/studios/modelscope/E2-F5-TTS)
[](https://x-lance.sjtu.edu.cn/)
[](https://www.pcl.ac.cn)
<!-- <img src="https://github.com/user-attachments/assets/12d7749c-071a-427c-81bf-b87b91def670" alt="Watermark" style="width: 40px; height: auto"> -->
**F5-TTS**: Diffusion Transformer with ConvNeXt V2, faster trained and inference.
**E2 TTS**: Flat-UNet Transformer, closest reproduction from [paper](https://arxiv.org/abs/2406.18009).
**Sway Sampling**: Inference-time flow step sampling strategy, greatly improves performance
### Thanks to all the contributors !
## News
- **2025/03/12**: 🔥 F5-TTS v1 base model with better training and inference performance. [Few demo](https://swivid.github.io/F5-TTS_updates).
- **2024/10/08**: F5-TTS & E2 TTS base models on [🤗 Hugging Face](https://huggingface.co/SWivid/F5-TTS), [🤖 Model Scope](https://www.modelscope.cn/models/SWivid/F5-TTS_Emilia-ZH-EN), [🟣 Wisemodel](https://wisemodel.cn/models/SJTU_X-LANCE/F5-TTS_Emilia-ZH-EN).
## Installation
### Create a separate environment if needed
```bash
# Create a python 3.10 conda env (you could also use virtualenv)
conda create -n f5-tts python=3.10
conda activate f5-tts
```
### Install PyTorch with matched device
<details>
<summary>NVIDIA GPU</summary>
> ```bash
> # Install pytorch with your CUDA version, e.g.
> pip install torch==2.4.0+cu124 torchaudio==2.4.0+cu124 --extra-index-url https://download.pytorch.org/whl/cu124
> ```
</details>
<details>
<summary>AMD GPU</summary>
> ```bash
> # Install pytorch with your ROCm version (Linux only), e.g.
> pip install torch==2.5.1+rocm6.2 torchaudio==2.5.1+rocm6.2 --extra-index-url https://download.pytorch.org/whl/rocm6.2
> ```
</details>
<details>
<summary>Intel GPU</summary>
> ```bash
> # Install pytorch with your XPU version, e.g.
> # Intel® Deep Learning Essentials or Intel® oneAPI Base Toolkit must be installed
> pip install torch torchaudio --index-url https://download.pytorch.org/whl/test/xpu
>
> # Intel GPU support is also available through IPEX (Intel® Extension for PyTorch)
> # IPEX does not require the Intel® Deep Learning Essentials or Intel® oneAPI Base Toolkit
> # See: https://pytorch-extension.intel.com/installation?request=platform
> ```
</details>
<details>
<summary>Apple Silicon</summary>
> ```bash
> # Install the stable pytorch, e.g.
> pip install torch torchaudio
> ```
</details>
### Then you can choose one from below:
> ### 1. As a pip package (if just for inference)
>
> ```bash
> pip install f5-tts
> ```
>
> ### 2. Local editable (if also do training, finetuning)
>
> ```bash
> git clone https://github.com/SWivid/F5-TTS.git
> cd F5-TTS
> # git submodule update --init --recursive # (optional, if need > bigvgan)
> pip install -e .
> ```
### Docker usage also available
```bash
# Build from Dockerfile
docker build -t f5tts:v1 .
# Run from GitHub Container Registry
docker container run --rm -it --gpus=all --mount 'type=volume,source=f5-tts,target=/root/.cache/huggingface/hub/' -p 7860:7860 ghcr.io/swivid/f5-tts:main
# Quickstart if you want to just run the web interface (not CLI)
docker container run --rm -it --gpus=all --mount 'type=volume,source=f5-tts,target=/root/.cache/huggingface/hub/' -p 7860:7860 ghcr.io/swivid/f5-tts:main f5-tts_infer-gradio --host 0.0.0.0
```
### Runtime
Deployment solution with Triton and TensorRT-LLM.
#### Benchmark Results
Decoding on a single L20 GPU, using 26 different prompt_audio & target_text pairs, 16 NFE.
| Model | Concurrency | Avg Latency | RTF | Mode |
|---------------------|----------------|-------------|--------|-----------------|
| F5-TTS Base (Vocos) | 2 | 253 ms | 0.0394 | Client-Server |
| F5-TTS Base (Vocos) | 1 (Batch_size) | - | 0.0402 | Offline TRT-LLM |
| F5-TTS Base (Vocos) | 1 (Batch_size) | - | 0.1467 | Offline Pytorch |
See [detailed instructions](src/f5_tts/runtime/triton_trtllm/README.md) for more information.
## Inference
- In order to achieve desired performance, take a moment to read [detailed guidance](src/f5_tts/infer).
- By properly searching the keywords of problem encountered, [issues](https://github.com/SWivid/F5-TTS/issues?q=is%3Aissue) are very helpful.
### 1. Gradio App
Currently supported features:
- Basic TTS with Chunk Inference
- Multi-Style / Multi-Speaker Generation
- Voice Chat powered by Qwen2.5-3B-Instruct
- [Custom inference with more language support](src/f5_tts/infer/SHARED.md)
```bash
# Launch a Gradio app (web interface)
f5-tts_infer-gradio
# Specify the port/host
f5-tts_infer-gradio --port 7860 --host 0.0.0.0
# Launch a share link
f5-tts_infer-gradio --share
```
<details>
<summary>NVIDIA device docker compose file example</summary>
```yaml
services:
f5-tts:
image: ghcr.io/swivid/f5-tts:main
ports:
- "7860:7860"
environment:
GRADIO_SERVER_PORT: 7860
entrypoint: ["f5-tts_infer-gradio", "--port", "7860", "--host", "0.0.0.0"]
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]
volumes:
f5-tts:
driver: local
```
</details>
### 2. CLI Inference
```bash
# Run with flags
# Leave --ref_text "" will have ASR model transcribe (extra GPU memory usage)
f5-tts_infer-cli --model F5TTS_v1_Base \
--ref_audio "provide_prompt_wav_path_here.wav" \
--ref_text "The content, subtitle or transcription of reference audio." \
--gen_text "Some text you want TTS model generate for you."
# Run with default setting. src/f5_tts/infer/examples/basic/basic.toml
f5-tts_infer-cli
# Or with your own .toml file
f5-tts_infer-cli -c custom.toml
# Multi voice. See src/f5_tts/infer/README.md
f5-tts_infer-cli -c src/f5_tts/infer/examples/multi/story.toml
```
## Training
### 1. With Hugging Face Accelerate
Refer to [training & finetuning guidance](src/f5_tts/train) for best practice.
### 2. With Gradio App
```bash
# Quick start with Gradio web interface
f5-tts_finetune-gradio
```
Read [training & finetuning guidance](src/f5_tts/train) for more instructions.
## [Evaluation](src/f5_tts/eval)
## Development
Use pre-commit to ensure code quality (will run linters and formatters automatically):
```bash
pip install pre-commit
pre-commit install
```
When making a pull request, before each commit, run:
```bash
pre-commit run --all-files
```
Note: Some model components have linting exceptions for E722 to accommodate tensor notation.
## Acknowledgements
- [E2-TTS](https://arxiv.org/abs/2406.18009) brilliant work, simple and effective
- [Emilia](https://arxiv.org/abs/2407.05361), [WenetSpeech4TTS](https://arxiv.org/abs/2406.05763), [LibriTTS](https://arxiv.org/abs/1904.02882), [LJSpeech](https://keithito.com/LJ-Speech-Dataset/) valuable datasets
- [lucidrains](https://github.com/lucidrains) initial CFM structure with also [bfs18](https://github.com/bfs18) for discussion
- [SD3](https://arxiv.org/abs/2403.03206) & [Hugging Face diffusers](https://github.com/huggingface/diffusers) DiT and MMDiT code structure
- [torchdiffeq](https://github.com/rtqichen/torchdiffeq) as ODE solver, [Vocos](https://huggingface.co/charactr/vocos-mel-24khz) and [BigVGAN](https://github.com/NVIDIA/BigVGAN) as vocoder
- [FunASR](https://github.com/modelscope/FunASR), [faster-whisper](https://github.com/SYSTRAN/faster-whisper), [UniSpeech](https://github.com/microsoft/UniSpeech), [SpeechMOS](https://github.com/tarepan/SpeechMOS) for evaluation tools
- [ctc-forced-aligner](https://github.com/MahmoudAshraf97/ctc-forced-aligner) for speech edit test
- [mrfakename](https://x.com/realmrfakename) huggingface space demo ~
- [f5-tts-mlx](https://github.com/lucasnewman/f5-tts-mlx/tree/main) Implementation with MLX framework by [Lucas Newman](https://github.com/lucasnewman)
- [F5-TTS-ONNX](https://github.com/DakeQQ/F5-TTS-ONNX) ONNX Runtime version by [DakeQQ](https://github.com/DakeQQ)
- [Yuekai Zhang](https://github.com/yuekaizhang) Triton and TensorRT-LLM support ~
## Citation
If our work and codebase is useful for you, please cite as:
```
@article{chen-etal-2024-f5tts,
title={F5-TTS: A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching},
author={Yushen Chen and Zhikang Niu and Ziyang Ma and Keqi Deng and Chunhui Wang and Jian Zhao and Kai Yu and Xie Chen},
journal={arXiv preprint arXiv:2410.06885},
year={2024},
}
```
## License
Our code is released under MIT License. The pre-trained models are licensed under the CC-BY-NC license due to the training data Emilia, which is an in-the-wild dataset. Sorry for any inconvenience this may cause.
|