Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
# type: ignore
|
2 |
from typing import Any
|
3 |
import gradio as gr
|
4 |
import spaces
|
@@ -6,7 +5,6 @@ import torch
|
|
6 |
from PIL import Image
|
7 |
from transformers import AutoModelForCausalLM, LlamaTokenizer
|
8 |
|
9 |
-
|
10 |
DEFAULT_PARAMS = {
|
11 |
"do_sample": False,
|
12 |
"max_new_tokens": 256,
|
@@ -22,7 +20,7 @@ DEFAULT_QUERY = (
|
|
22 |
"Avoid subjective interpretations or speculation."
|
23 |
)
|
24 |
|
25 |
-
DTYPE = torch.
|
26 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
27 |
|
28 |
tokenizer = LlamaTokenizer.from_pretrained(
|
@@ -58,25 +56,23 @@ def generate_caption(
|
|
58 |
}
|
59 |
|
60 |
outputs = model.generate(**inputs, **params)
|
61 |
-
outputs = outputs[:, inputs["input_ids"].shape[1]
|
62 |
result = tokenizer.decode(outputs[0])
|
63 |
|
64 |
result = result.replace("This image showcases", "").strip().removesuffix("</s>").strip().capitalize()
|
65 |
return result
|
66 |
|
67 |
-
|
68 |
with gr.Blocks() as demo:
|
69 |
with gr.Row():
|
70 |
with gr.Column():
|
71 |
input_image = gr.Image(type="pil")
|
72 |
-
input_query = gr.Textbox(lines=5, label="Prompt", value=DEFAULT_QUERY)
|
73 |
run_button = gr.Button(value="Generate Caption")
|
74 |
with gr.Column():
|
75 |
output_caption = gr.Textbox(label="Generated Caption", show_copy_button=True)
|
76 |
|
77 |
run_button.click(
|
78 |
fn=generate_caption,
|
79 |
-
inputs=[input_image,
|
80 |
outputs=output_caption,
|
81 |
)
|
82 |
|
|
|
|
|
1 |
from typing import Any
|
2 |
import gradio as gr
|
3 |
import spaces
|
|
|
5 |
from PIL import Image
|
6 |
from transformers import AutoModelForCausalLM, LlamaTokenizer
|
7 |
|
|
|
8 |
DEFAULT_PARAMS = {
|
9 |
"do_sample": False,
|
10 |
"max_new_tokens": 256,
|
|
|
20 |
"Avoid subjective interpretations or speculation."
|
21 |
)
|
22 |
|
23 |
+
DTYPE = torch.float16 # Use float16 for faster processing on CPU with limited resources
|
24 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
25 |
|
26 |
tokenizer = LlamaTokenizer.from_pretrained(
|
|
|
56 |
}
|
57 |
|
58 |
outputs = model.generate(**inputs, **params)
|
59 |
+
outputs = outputs[:, inputs["input_ids"].shape[1]:]
|
60 |
result = tokenizer.decode(outputs[0])
|
61 |
|
62 |
result = result.replace("This image showcases", "").strip().removesuffix("</s>").strip().capitalize()
|
63 |
return result
|
64 |
|
|
|
65 |
with gr.Blocks() as demo:
|
66 |
with gr.Row():
|
67 |
with gr.Column():
|
68 |
input_image = gr.Image(type="pil")
|
|
|
69 |
run_button = gr.Button(value="Generate Caption")
|
70 |
with gr.Column():
|
71 |
output_caption = gr.Textbox(label="Generated Caption", show_copy_button=True)
|
72 |
|
73 |
run_button.click(
|
74 |
fn=generate_caption,
|
75 |
+
inputs=[input_image], # Only input image is needed
|
76 |
outputs=output_caption,
|
77 |
)
|
78 |
|