Spaces:
Build error
Build error
File size: 19,818 Bytes
b32806b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
"""
用于推理 inference/train_mimictalk_on_a_video.py 得到的person-specific模型
"""
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
# import librosa
import random
import time
import numpy as np
import importlib
import tqdm
import copy
import cv2
# common utils
from utils.commons.hparams import hparams, set_hparams
from utils.commons.tensor_utils import move_to_cuda, convert_to_tensor
from utils.commons.ckpt_utils import load_ckpt, get_last_checkpoint
# 3DMM-related utils
from deep_3drecon.deep_3drecon_models.bfm import ParametricFaceModel
from data_util.face3d_helper import Face3DHelper
from data_gen.utils.process_image.fit_3dmm_landmark import fit_3dmm_for_a_image
from data_gen.utils.process_video.fit_3dmm_landmark import fit_3dmm_for_a_video
from deep_3drecon.secc_renderer import SECC_Renderer
from data_gen.eg3d.convert_to_eg3d_convention import get_eg3d_convention_camera_pose_intrinsic
# Face Parsing
from data_gen.utils.mp_feature_extractors.mp_segmenter import MediapipeSegmenter
from data_gen.utils.process_video.extract_segment_imgs import inpaint_torso_job, extract_background
# other inference utils
from inference.infer_utils import mirror_index, load_img_to_512_hwc_array, load_img_to_normalized_512_bchw_tensor
from inference.infer_utils import smooth_camera_sequence, smooth_features_xd
from inference.edit_secc import blink_eye_for_secc, hold_eye_opened_for_secc
from inference.real3d_infer import GeneFace2Infer
class AdaptGeneFace2Infer(GeneFace2Infer):
def __init__(self, audio2secc_dir, head_model_dir, torso_model_dir, device=None, **kwargs):
if device is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.device = device
self.audio2secc_dir = audio2secc_dir
self.head_model_dir = head_model_dir
self.torso_model_dir = torso_model_dir
self.audio2secc_model = self.load_audio2secc(audio2secc_dir)
self.secc2video_model = self.load_secc2video(head_model_dir, torso_model_dir)
self.audio2secc_model.to(device).eval()
self.secc2video_model.to(device).eval()
self.seg_model = MediapipeSegmenter()
self.secc_renderer = SECC_Renderer(512)
self.face3d_helper = Face3DHelper(use_gpu=True, keypoint_mode='lm68')
self.mp_face3d_helper = Face3DHelper(use_gpu=True, keypoint_mode='mediapipe')
# self.camera_selector = KNearestCameraSelector()
def load_secc2video(self, head_model_dir, torso_model_dir):
if torso_model_dir != '':
config_dir = torso_model_dir if os.path.isdir(torso_model_dir) else os.path.dirname(torso_model_dir)
set_hparams(f"{config_dir}/config.yaml", print_hparams=False)
hparams['htbsr_head_threshold'] = 1.0
self.secc2video_hparams = copy.deepcopy(hparams)
ckpt = get_last_checkpoint(torso_model_dir)[0]
lora_args = ckpt.get("lora_args", None)
from modules.real3d.secc_img2plane_torso import OSAvatarSECC_Img2plane_Torso
model = OSAvatarSECC_Img2plane_Torso(self.secc2video_hparams, lora_args=lora_args)
load_ckpt(model, f"{torso_model_dir}", model_name='model', strict=True)
self.learnable_triplane = nn.Parameter(torch.zeros([1, 3, model.triplane_hid_dim*model.triplane_depth, 256, 256]).float().cuda(), requires_grad=True)
load_ckpt(self.learnable_triplane, f"{torso_model_dir}", model_name='learnable_triplane', strict=True)
model._last_cano_planes = self.learnable_triplane
if head_model_dir != '':
print("| Warning: Assigned --torso_ckpt which also contains head, but --head_ckpt is also assigned, skipping the --head_ckpt.")
else:
from modules.real3d.secc_img2plane_torso import OSAvatarSECC_Img2plane
set_hparams(f"{head_model_dir}/config.yaml", print_hparams=False)
ckpt = get_last_checkpoint(head_model_dir)[0]
lora_args = ckpt.get("lora_args", None)
self.secc2video_hparams = copy.deepcopy(hparams)
model = OSAvatarSECC_Img2plane(self.secc2video_hparams, lora_args=lora_args)
load_ckpt(model, f"{head_model_dir}", model_name='model', strict=True)
self.learnable_triplane = nn.Parameter(torch.zeros([1, 3, model.triplane_hid_dim*model.triplane_depth, 256, 256]).float().cuda(), requires_grad=True)
model._last_cano_planes = self.learnable_triplane
load_ckpt(model._last_cano_planes, f"{head_model_dir}", model_name='learnable_triplane', strict=True)
self.person_ds = ckpt['person_ds']
return model
def prepare_batch_from_inp(self, inp):
"""
:param inp: {'audio_source_name': (str)}
:return: a dict that contains the condition feature of NeRF
"""
sample = {}
# Process Driving Motion
if inp['drv_audio_name'][-4:] in ['.wav', '.mp3']:
self.save_wav16k(inp['drv_audio_name'])
if self.audio2secc_hparams['audio_type'] == 'hubert':
hubert = self.get_hubert(self.wav16k_name)
elif self.audio2secc_hparams['audio_type'] == 'mfcc':
hubert = self.get_mfcc(self.wav16k_name) / 100
f0 = self.get_f0(self.wav16k_name)
if f0.shape[0] > len(hubert):
f0 = f0[:len(hubert)]
else:
num_to_pad = len(hubert) - len(f0)
f0 = np.pad(f0, pad_width=((0,num_to_pad), (0,0)))
t_x = hubert.shape[0]
x_mask = torch.ones([1, t_x]).float() # mask for audio frames
y_mask = torch.ones([1, t_x//2]).float() # mask for motion/image frames
sample.update({
'hubert': torch.from_numpy(hubert).float().unsqueeze(0).cuda(),
'f0': torch.from_numpy(f0).float().reshape([1,-1]).cuda(),
'x_mask': x_mask.cuda(),
'y_mask': y_mask.cuda(),
})
sample['blink'] = torch.zeros([1, t_x, 1]).long().cuda()
sample['audio'] = sample['hubert']
sample['eye_amp'] = torch.ones([1, 1]).cuda() * 1.0
elif inp['drv_audio_name'][-4:] in ['.mp4']:
drv_motion_coeff_dict = fit_3dmm_for_a_video(inp['drv_audio_name'], save=False)
drv_motion_coeff_dict = convert_to_tensor(drv_motion_coeff_dict)
t_x = drv_motion_coeff_dict['exp'].shape[0] * 2
self.drv_motion_coeff_dict = drv_motion_coeff_dict
elif inp['drv_audio_name'][-4:] in ['.npy']:
drv_motion_coeff_dict = np.load(inp['drv_audio_name'], allow_pickle=True).tolist()
drv_motion_coeff_dict = convert_to_tensor(drv_motion_coeff_dict)
t_x = drv_motion_coeff_dict['exp'].shape[0] * 2
self.drv_motion_coeff_dict = drv_motion_coeff_dict
# Face Parsing
sample['ref_gt_img'] = self.person_ds['gt_img'].cuda()
img = self.person_ds['gt_img'].reshape([3, 512, 512]).permute(1, 2, 0)
img = (img + 1) * 127.5
img = np.ascontiguousarray(img.int().numpy()).astype(np.uint8)
segmap = self.seg_model._cal_seg_map(img)
sample['segmap'] = torch.tensor(segmap).float().unsqueeze(0).cuda()
head_img = self.seg_model._seg_out_img_with_segmap(img, segmap, mode='head')[0]
sample['ref_head_img'] = ((torch.tensor(head_img) - 127.5)/127.5).float().unsqueeze(0).permute(0, 3, 1,2).cuda() # [b,c,h,w]
inpaint_torso_img, _, _, _ = inpaint_torso_job(img, segmap)
sample['ref_torso_img'] = ((torch.tensor(inpaint_torso_img) - 127.5)/127.5).float().unsqueeze(0).permute(0, 3, 1,2).cuda() # [b,c,h,w]
if inp['bg_image_name'] == '':
bg_img = extract_background([img], [segmap], 'knn')
else:
bg_img = cv2.imread(inp['bg_image_name'])
bg_img = cv2.cvtColor(bg_img, cv2.COLOR_BGR2RGB)
bg_img = cv2.resize(bg_img, (512,512))
sample['bg_img'] = ((torch.tensor(bg_img) - 127.5)/127.5).float().unsqueeze(0).permute(0, 3, 1,2).cuda() # [b,c,h,w]
# 3DMM, get identity code and camera pose
image_name = f"data/raw/val_imgs/{self.person_ds['video_id']}_img.png"
os.makedirs(os.path.dirname(image_name), exist_ok=True)
cv2.imwrite(image_name, img[:,:,::-1])
coeff_dict = fit_3dmm_for_a_image(image_name, save=False)
coeff_dict['id'] = self.person_ds['id'].reshape([1,80]).numpy()
assert coeff_dict is not None
src_id = torch.tensor(coeff_dict['id']).reshape([1,80]).cuda()
src_exp = torch.tensor(coeff_dict['exp']).reshape([1,64]).cuda()
src_euler = torch.tensor(coeff_dict['euler']).reshape([1,3]).cuda()
src_trans = torch.tensor(coeff_dict['trans']).reshape([1,3]).cuda()
sample['id'] = src_id.repeat([t_x//2,1])
# get the src_kp for torso model
sample['src_kp'] = self.person_ds['src_kp'].cuda().reshape([1, 68, 3]).repeat([t_x//2,1,1])[..., :2] # [B, 68, 2]
# get camera pose file
random.seed(time.time())
if inp['drv_pose_name'] in ['nearest', 'topk']:
camera_ret = get_eg3d_convention_camera_pose_intrinsic({'euler': torch.tensor(coeff_dict['euler']).reshape([1,3]), 'trans': torch.tensor(coeff_dict['trans']).reshape([1,3])})
c2w, intrinsics = camera_ret['c2w'], camera_ret['intrinsics']
camera = np.concatenate([c2w.reshape([1,16]), intrinsics.reshape([1,9])], axis=-1)
coeff_names, distance_matrix = self.camera_selector.find_k_nearest(camera, k=100)
coeff_names = coeff_names[0] # squeeze
if inp['drv_pose_name'] == 'nearest':
inp['drv_pose_name'] = coeff_names[0]
else:
inp['drv_pose_name'] = random.choice(coeff_names)
# inp['drv_pose_name'] = coeff_names[0]
elif inp['drv_pose_name'] == 'random':
inp['drv_pose_name'] = self.camera_selector.random_select()
else:
inp['drv_pose_name'] = inp['drv_pose_name']
print(f"| To extract pose from {inp['drv_pose_name']}")
# extract camera pose
if inp['drv_pose_name'] == 'static':
sample['euler'] = torch.tensor(coeff_dict['euler']).reshape([1,3]).cuda().repeat([t_x//2,1]) # default static pose
sample['trans'] = torch.tensor(coeff_dict['trans']).reshape([1,3]).cuda().repeat([t_x//2,1])
else: # from file
if inp['drv_pose_name'].endswith('.mp4'):
# extract coeff from video
drv_pose_coeff_dict = fit_3dmm_for_a_video(inp['drv_pose_name'], save=False)
else:
# load from npy
drv_pose_coeff_dict = np.load(inp['drv_pose_name'], allow_pickle=True).tolist()
print(f"| Extracted pose from {inp['drv_pose_name']}")
eulers = convert_to_tensor(drv_pose_coeff_dict['euler']).reshape([-1,3]).cuda()
trans = convert_to_tensor(drv_pose_coeff_dict['trans']).reshape([-1,3]).cuda()
len_pose = len(eulers)
index_lst = [mirror_index(i, len_pose) for i in range(t_x//2)]
sample['euler'] = eulers[index_lst]
sample['trans'] = trans[index_lst]
# fix the z axis
sample['trans'][:, -1] = sample['trans'][0:1, -1].repeat([sample['trans'].shape[0]])
# mapping to the init pose
if inp.get("map_to_init_pose", 'False') == 'True':
diff_euler = torch.tensor(coeff_dict['euler']).reshape([1,3]).cuda() - sample['euler'][0:1]
sample['euler'] = sample['euler'] + diff_euler
diff_trans = torch.tensor(coeff_dict['trans']).reshape([1,3]).cuda() - sample['trans'][0:1]
sample['trans'] = sample['trans'] + diff_trans
# prepare camera
camera_ret = get_eg3d_convention_camera_pose_intrinsic({'euler':sample['euler'].cpu(), 'trans':sample['trans'].cpu()})
c2w, intrinsics = camera_ret['c2w'], camera_ret['intrinsics']
# smooth camera
camera_smo_ksize = 7
camera = np.concatenate([c2w.reshape([-1,16]), intrinsics.reshape([-1,9])], axis=-1)
camera = smooth_camera_sequence(camera, kernel_size=camera_smo_ksize) # [T, 25]
camera = torch.tensor(camera).cuda().float()
sample['camera'] = camera
return sample
@torch.no_grad()
def forward_secc2video(self, batch, inp=None):
num_frames = len(batch['drv_secc'])
camera = batch['camera']
src_kps = batch['src_kp']
drv_kps = batch['drv_kp']
cano_secc_color = batch['cano_secc']
src_secc_color = batch['src_secc']
drv_secc_colors = batch['drv_secc']
ref_img_gt = batch['ref_gt_img']
ref_img_head = batch['ref_head_img']
ref_torso_img = batch['ref_torso_img']
bg_img = batch['bg_img']
segmap = batch['segmap']
# smooth torso drv_kp
torso_smo_ksize = 7
drv_kps = smooth_features_xd(drv_kps.reshape([-1, 68*2]), kernel_size=torso_smo_ksize).reshape([-1, 68, 2])
# forward renderer
img_raw_lst = []
img_lst = []
depth_img_lst = []
with torch.no_grad():
for i in tqdm.trange(num_frames, desc="MimicTalk is rendering frames"):
kp_src = torch.cat([src_kps[i:i+1].reshape([1, 68, 2]), torch.zeros([1, 68,1]).to(src_kps.device)],dim=-1)
kp_drv = torch.cat([drv_kps[i:i+1].reshape([1, 68, 2]), torch.zeros([1, 68,1]).to(drv_kps.device)],dim=-1)
cond={'cond_cano': cano_secc_color,'cond_src': src_secc_color, 'cond_tgt': drv_secc_colors[i:i+1].cuda(),
'ref_torso_img': ref_torso_img, 'bg_img': bg_img, 'segmap': segmap,
'kp_s': kp_src, 'kp_d': kp_drv}
########################################################################################################
### 相比real3d_infer只修改了这行👇,即cano_triplane来自cache里的learnable_triplane,而不是img预测的plane ####
########################################################################################################
gen_output = self.secc2video_model.forward(img=None, camera=camera[i:i+1], cond=cond, ret={}, cache_backbone=False, use_cached_backbone=True)
img_lst.append(gen_output['image'])
img_raw_lst.append(gen_output['image_raw'])
depth_img_lst.append(gen_output['image_depth'])
# save demo video
depth_imgs = torch.cat(depth_img_lst)
imgs = torch.cat(img_lst)
imgs_raw = torch.cat(img_raw_lst)
secc_img = torch.cat([torch.nn.functional.interpolate(drv_secc_colors[i:i+1], (512,512)) for i in range(num_frames)])
if inp['out_mode'] == 'concat_debug':
secc_img = secc_img.cpu()
secc_img = ((secc_img + 1) * 127.5).permute(0, 2, 3, 1).int().numpy()
depth_img = F.interpolate(depth_imgs, (512,512)).cpu()
depth_img = depth_img.repeat([1,3,1,1])
depth_img = (depth_img - depth_img.min()) / (depth_img.max() - depth_img.min())
depth_img = depth_img * 2 - 1
depth_img = depth_img.clamp(-1,1)
secc_img = secc_img / 127.5 - 1
secc_img = torch.from_numpy(secc_img).permute(0, 3, 1, 2)
imgs = torch.cat([ref_img_gt.repeat([imgs.shape[0],1,1,1]).cpu(), secc_img, F.interpolate(imgs_raw, (512,512)).cpu(), depth_img, imgs.cpu()], dim=-1)
elif inp['out_mode'] == 'final':
imgs = imgs.cpu()
elif inp['out_mode'] == 'debug':
raise NotImplementedError("to do: save separate videos")
imgs = imgs.clamp(-1,1)
import imageio
import uuid
debug_name = f'{uuid.uuid1()}.mp4'
out_imgs = ((imgs.permute(0, 2, 3, 1) + 1)/2 * 255).int().cpu().numpy().astype(np.uint8)
writer = imageio.get_writer(debug_name, fps=25, format='FFMPEG', codec='h264')
for i in tqdm.trange(len(out_imgs), desc="Imageio is saving video"):
writer.append_data(out_imgs[i])
writer.close()
out_fname = 'infer_out/tmp/' + os.path.basename(inp['drv_pose_name'])[:-4] + '.mp4' if inp['out_name'] == '' else inp['out_name']
try:
os.makedirs(os.path.dirname(out_fname), exist_ok=True)
except: pass
if inp['drv_audio_name'][-4:] in ['.wav', '.mp3']:
# os.system(f"ffmpeg -i {debug_name} -i {inp['drv_audio_name']} -y -v quiet -shortest {out_fname}")
cmd = f"/usr/bin/ffmpeg -i {debug_name} -i {self.wav16k_name} -y -r 25 -ar 16000 -c:v copy -c:a libmp3lame -pix_fmt yuv420p -b:v 2000k -strict experimental -shortest {out_fname}"
os.system(cmd)
os.system(f"rm {debug_name}")
else:
ret = os.system(f"ffmpeg -i {debug_name} -i {inp['drv_audio_name']} -map 0:v -map 1:a -y -v quiet -shortest {out_fname}")
if ret != 0: # 没有成功从drv_audio_name里面提取到音频, 则直接输出无音频轨道的纯视频
os.system(f"mv {debug_name} {out_fname}")
print(f"Saved at {out_fname}")
return out_fname
if __name__ == '__main__':
import argparse, glob, tqdm
parser = argparse.ArgumentParser()
parser.add_argument("--a2m_ckpt", default='checkpoints/240112_icl_audio2secc_vox2_cmlr') # checkpoints/0727_audio2secc/audio2secc_withlm2d100_randomframe
parser.add_argument("--head_ckpt", default='') # checkpoints/0729_th1kh/secc_img2plane checkpoints/0720_img2planes/secc_img2plane_two_stage
parser.add_argument("--torso_ckpt", default='checkpoints_mimictalk/German_20s')
parser.add_argument("--bg_img", default='') # data/raw/val_imgs/bg3.png
parser.add_argument("--drv_aud", default='data/raw/examples/80_vs_60_10s.wav')
parser.add_argument("--drv_pose", default='data/raw/examples/German_20s.mp4') # nearest | topk | random | static | vid_name
parser.add_argument("--drv_style", default='data/raw/examples/angry.mp4') # nearest | topk | random | static | vid_name
parser.add_argument("--blink_mode", default='period') # none | period
parser.add_argument("--temperature", default=0.3, type=float) # nearest | random
parser.add_argument("--denoising_steps", default=20, type=int) # nearest | random
parser.add_argument("--cfg_scale", default=1.5, type=float) # nearest | random
parser.add_argument("--out_name", default='') # nearest | random
parser.add_argument("--out_mode", default='concat_debug') # concat_debug | debug | final
parser.add_argument("--hold_eye_opened", default='False') # concat_debug | debug | final
parser.add_argument("--map_to_init_pose", default='True') # concat_debug | debug | final
parser.add_argument("--seed", default=None, type=int) # random seed, default None to use time.time()
args = parser.parse_args()
inp = {
'a2m_ckpt': args.a2m_ckpt,
'head_ckpt': args.head_ckpt,
'torso_ckpt': args.torso_ckpt,
'bg_image_name': args.bg_img,
'drv_audio_name': args.drv_aud,
'drv_pose_name': args.drv_pose,
'drv_talking_style_name': args.drv_style,
'blink_mode': args.blink_mode,
'temperature': args.temperature,
'denoising_steps': args.denoising_steps,
'cfg_scale': args.cfg_scale,
'out_name': args.out_name,
'out_mode': args.out_mode,
'map_to_init_pose': args.map_to_init_pose,
'hold_eye_opened': args.hold_eye_opened,
'seed': args.seed,
}
AdaptGeneFace2Infer.example_run(inp) |