File size: 5,238 Bytes
7e738ef 78a7c54 f9c5a74 f42f33d 78a7c54 ec95781 f9c5a74 d620d8e f9c5a74 f42f33d f9c5a74 cb6b0bf f9c5a74 ec95781 f9c5a74 cb6b0bf f9c5a74 ec95781 f9c5a74 ec95781 f9c5a74 ec95781 f9c5a74 cb6b0bf f9c5a74 ec95781 f9c5a74 cb6b0bf d0f6630 cb6b0bf d0f6630 cb6b0bf d0f6630 cb6b0bf d0f6630 cb6b0bf d0f6630 cb6b0bf d0f6630 cb6b0bf d0f6630 cb6b0bf d0f6630 cb6b0bf d0f6630 cb6b0bf d0f6630 cb6b0bf d0f6630 315d628 cb6b0bf d0f6630 315d628 cb6b0bf 88354af cb6b0bf 315d628 cb6b0bf 315d628 cb6b0bf ec95781 cb6b0bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import spaces
import os
import gradio as gr
from pdf2image import convert_from_path
from byaldi import RAGMultiModalModel
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
import torchvision
import subprocess
def install_poppler():
try:
subprocess.run(["pdfinfo"], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
except FileNotFoundError:
print("Poppler not found. Installing...")
subprocess.run("apt-get update", shell=True)
subprocess.run("apt-get install -y poppler-utils", shell=True)
install_poppler()
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
RAG = RAGMultiModalModel.from_pretrained("vidore/colpali-v1.2")
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct",
trust_remote_code=True, torch_dtype=torch.bfloat16).cuda().eval()
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)
@spaces.GPU()
def process_pdf_and_query(pdf_file, user_query):
images = convert_from_path(pdf_file.name)
num_images = len(images)
RAG.index(
input_path=pdf_file.name,
index_name="image_index",
store_collection_with_index=False,
overwrite=True
)
results = RAG.search(user_query, k=1)
if not results:
return "No results found.", num_images
image_index = results[0]["page_num"] - 1
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": images[image_index],
},
{"type": "text", "text": user_query},
],
}
]
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=50)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
return output_text[0], num_images
css = """
body {
font-family: Arial, sans-serif;
background-color: #2b2b2b;
color: #e0e0e0;
}
.container {
max-width: 800px;
margin: 0 auto;
padding: 20px;
background-color: #363636;
border-radius: 10px;
box-shadow: 0 0 10px rgba(0,0,0,0.3);
}
.title {
font-size: 24px;
font-weight: bold;
text-align: center;
margin-bottom: 20px;
color: #50fa7b;
}
.submit-btn {
background-color: #50fa7b;
color: #282a36;
padding: 10px 20px;
border: none;
border-radius: 5px;
cursor: pointer;
font-size: 16px;
font-weight: bold;
}
.submit-btn:hover {
background-color: #45c967;
}
.duplicate-button {
background-color: #8be9fd;
color: #282a36;
padding: 10px 20px;
border: none;
border-radius: 5px;
cursor: pointer;
font-size: 16px;
font-weight: bold;
margin-top: 20px;
}
.duplicate-button:hover {
background-color: #79c7d8;
}
a {
color: #8be9fd;
text-decoration: none;
}
a:hover {
text-decoration: underline;
}
"""
explanation = """
<div style="background-color: #44475a; padding: 15px; border-radius: 5px; margin-bottom: 20px; color: #f8f8f2;">
<h3 style="color: #50fa7b;"> MICA </h3>
<p>
MICA est une intelligene artificielle dédiée à la comptabilité associative, offrant analyse automatisée, recommandations personnalisées et conformité RGPD. Il simplifie la gestion comptable, optimise les décisions et détecte les anomalies. MICA complète l’expertise humaine pour un gain de temps et de précision, tout en respectant les spécificités du secteur associatif.
</p>
</div>
"""
footer = """
<div style="text-align: center; margin-top: 20px; color: #f8f8f2;">
<a href="https://www.inediia.com/" target="_blank">Inediia</a> |
<br>
</div>
"""
with gr.Blocks(css=css, theme='freddyaboulton/dracula_revamped') as demo:
gr.HTML('<h1 style="text-align: center; font-size: 32px;"><a href="https://github.com/arad1367" target="_blank" style="text-decoration: none; color: #50fa7b;"> MICA une IA créée par INEDIIA </a></h1>')
gr.HTML(explanation)
pdf_input = gr.File(label="Upload PDF")
query_input = gr.Textbox(label="Poser votre question", placeholder="Poser votre question sur la comptabilité des associations")
submit_btn = gr.Button("Submit", elem_classes="submit-btn")
output_text = gr.Textbox(label="Réponse de MICA")
output_images = gr.Textbox(label="Nombre de pages pdf")
submit_btn.click(process_pdf_and_query, inputs=[pdf_input, query_input], outputs=[output_text, output_images])
gr.HTML(footer)
demo.launch(debug=True) |