File size: 5,238 Bytes
7e738ef
78a7c54
f9c5a74
 
 
 
 
 
f42f33d
 
78a7c54
 
 
 
 
 
 
 
 
 
ec95781
f9c5a74
 
d620d8e
f9c5a74
 
 
 
f42f33d
f9c5a74
cb6b0bf
f9c5a74
ec95781
f9c5a74
 
cb6b0bf
f9c5a74
 
 
ec95781
f9c5a74
 
 
ec95781
f9c5a74
 
 
 
 
 
 
 
 
 
 
 
 
ec95781
f9c5a74
 
 
 
 
 
 
 
 
 
cb6b0bf
f9c5a74
 
 
 
 
 
 
ec95781
f9c5a74
 
cb6b0bf
 
 
d0f6630
 
cb6b0bf
 
 
 
 
d0f6630
cb6b0bf
d0f6630
cb6b0bf
 
 
 
 
 
d0f6630
cb6b0bf
 
d0f6630
 
cb6b0bf
 
 
 
 
d0f6630
cb6b0bf
 
d0f6630
cb6b0bf
 
d0f6630
 
cb6b0bf
 
 
 
 
d0f6630
cb6b0bf
 
d0f6630
 
 
 
 
 
 
 
 
 
cb6b0bf
 
 
d0f6630
315d628
 
 
 
cb6b0bf
 
 
 
d0f6630
315d628
cb6b0bf
 
 
 
 
88354af
cb6b0bf
 
315d628
cb6b0bf
315d628
 
cb6b0bf
 
 
ec95781
 
cb6b0bf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import spaces
import os
import gradio as gr
from pdf2image import convert_from_path
from byaldi import RAGMultiModalModel
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
import torchvision
import subprocess

def install_poppler():
    try:
        subprocess.run(["pdfinfo"], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
    except FileNotFoundError:
        print("Poppler not found. Installing...")
        subprocess.run("apt-get update", shell=True)
        subprocess.run("apt-get install -y poppler-utils", shell=True)

install_poppler()

subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

RAG = RAGMultiModalModel.from_pretrained("vidore/colpali-v1.2")
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct",
                                                        trust_remote_code=True, torch_dtype=torch.bfloat16).cuda().eval()
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)

@spaces.GPU()
def process_pdf_and_query(pdf_file, user_query):
    images = convert_from_path(pdf_file.name)
    num_images = len(images)

    RAG.index(
        input_path=pdf_file.name,
        index_name="image_index",
        store_collection_with_index=False,
        overwrite=True
    )

    results = RAG.search(user_query, k=1)
    if not results:
        return "No results found.", num_images

    image_index = results[0]["page_num"] - 1
    messages = [
        {
            "role": "user",
            "content": [
                {
                    "type": "image",
                    "image": images[image_index],
                },
                {"type": "text", "text": user_query},
            ],
        }
    ]

    text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    )
    inputs = inputs.to("cuda")
    
    generated_ids = model.generate(**inputs, max_new_tokens=50)
    generated_ids_trimmed = [
        out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
    ]
    output_text = processor.batch_decode(
        generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
    )

    return output_text[0], num_images

css = """
body {
    font-family: Arial, sans-serif;
    background-color: #2b2b2b;
    color: #e0e0e0;
}
.container {
    max-width: 800px;
    margin: 0 auto;
    padding: 20px;
    background-color: #363636;
    border-radius: 10px;
    box-shadow: 0 0 10px rgba(0,0,0,0.3);
}
.title {
    font-size: 24px;
    font-weight: bold;
    text-align: center;
    margin-bottom: 20px;
    color: #50fa7b;
}
.submit-btn {
    background-color: #50fa7b;
    color: #282a36;
    padding: 10px 20px;
    border: none;
    border-radius: 5px;
    cursor: pointer;
    font-size: 16px;
    font-weight: bold;
}
.submit-btn:hover {
    background-color: #45c967;
}
.duplicate-button {
    background-color: #8be9fd;
    color: #282a36;
    padding: 10px 20px;
    border: none;
    border-radius: 5px;
    cursor: pointer;
    font-size: 16px;
    font-weight: bold;
    margin-top: 20px;
}
.duplicate-button:hover {
    background-color: #79c7d8;
}
a {
    color: #8be9fd;
    text-decoration: none;
}
a:hover {
    text-decoration: underline;
}
"""

explanation = """
<div style="background-color: #44475a; padding: 15px; border-radius: 5px; margin-bottom: 20px; color: #f8f8f2;">
    <h3 style="color: #50fa7b;"> MICA </h3>
    <p>
    MICA est une intelligene artificielle dédiée à la comptabilité associative, offrant analyse automatisée, recommandations personnalisées et conformité RGPD. Il simplifie la gestion comptable, optimise les décisions et détecte les anomalies. MICA complète l’expertise humaine pour un gain de temps et de précision, tout en respectant les spécificités du secteur associatif.
    </p>
</div>
"""

footer = """
<div style="text-align: center; margin-top: 20px; color: #f8f8f2;">
    <a href="https://www.inediia.com/" target="_blank">Inediia</a> |
    <br>
</div>
"""

with gr.Blocks(css=css, theme='freddyaboulton/dracula_revamped') as demo:
    gr.HTML('<h1 style="text-align: center; font-size: 32px;"><a href="https://github.com/arad1367" target="_blank" style="text-decoration: none; color: #50fa7b;"> MICA une IA créée par INEDIIA </a></h1>')
    gr.HTML(explanation)
    pdf_input = gr.File(label="Upload PDF")
    query_input = gr.Textbox(label="Poser votre question", placeholder="Poser votre question sur la comptabilité des associations")
    submit_btn = gr.Button("Submit", elem_classes="submit-btn")
    output_text = gr.Textbox(label="Réponse de MICA")
    output_images = gr.Textbox(label="Nombre de pages pdf")
    
    submit_btn.click(process_pdf_and_query, inputs=[pdf_input, query_input], outputs=[output_text, output_images])
    
    gr.HTML(footer)

demo.launch(debug=True)