import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from collections import OrderedDict from torch.nn import init import math import pdb def conv_bn(inp, oup, stride): return nn.Sequential( nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup), nn.ReLU(inplace=True) ) def conv_1x1_bn(inp, oup): return nn.Sequential( nn.Conv2d(inp, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), nn.ReLU(inplace=True) ) def channel_shuffle(x, groups): batchsize, num_channels, height, width = x.data.size() channels_per_group = num_channels // groups # reshape x = x.view(batchsize, groups, channels_per_group, height, width) x = torch.transpose(x, 1, 2).contiguous() # flatten x = x.view(batchsize, -1, height, width) return x class InvertedResidual(nn.Module): def __init__(self, inp, oup, stride, benchmodel): super(InvertedResidual, self).__init__() self.benchmodel = benchmodel self.stride = stride assert stride in [1, 2] oup_inc = oup//2 if self.benchmodel == 1: #assert inp == oup_inc self.banch2 = nn.Sequential( # pw nn.Conv2d(oup_inc, oup_inc, 1, 1, 0, bias=False), nn.BatchNorm2d(oup_inc), nn.ReLU(inplace=True), # dw nn.Conv2d(oup_inc, oup_inc, 3, stride, 1, groups=oup_inc, bias=False), nn.BatchNorm2d(oup_inc), # pw-linear nn.Conv2d(oup_inc, oup_inc, 1, 1, 0, bias=False), nn.BatchNorm2d(oup_inc), nn.ReLU(inplace=True), ) else: self.banch1 = nn.Sequential( # dw nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False), nn.BatchNorm2d(inp), # pw-linear nn.Conv2d(inp, oup_inc, 1, 1, 0, bias=False), nn.BatchNorm2d(oup_inc), nn.ReLU(inplace=True), ) self.banch2 = nn.Sequential( # pw nn.Conv2d(inp, oup_inc, 1, 1, 0, bias=False), nn.BatchNorm2d(oup_inc), nn.ReLU(inplace=True), # dw nn.Conv2d(oup_inc, oup_inc, 3, stride, 1, groups=oup_inc, bias=False), nn.BatchNorm2d(oup_inc), # pw-linear nn.Conv2d(oup_inc, oup_inc, 1, 1, 0, bias=False), nn.BatchNorm2d(oup_inc), nn.ReLU(inplace=True), ) @staticmethod def _concat(x, out): # concatenate along channel axis return torch.cat((x, out), 1) def forward(self, x): if 1==self.benchmodel: x1 = x[:, :(x.shape[1]//2), :, :] x2 = x[:, (x.shape[1]//2):, :, :] out = self._concat(x1, self.banch2(x2)) elif 2==self.benchmodel: out = self._concat(self.banch1(x), self.banch2(x)) return channel_shuffle(out, 2) class ShuffleNetV2(nn.Module): def __init__(self, n_class=1000, input_size=224, width_mult=2.): super(ShuffleNetV2, self).__init__() assert input_size % 32 == 0, "Input size needs to be divisible by 32" self.stage_repeats = [4, 8, 4] # index 0 is invalid and should never be called. # only used for indexing convenience. if width_mult == 0.5: self.stage_out_channels = [-1, 24, 48, 96, 192, 1024] elif width_mult == 1.0: self.stage_out_channels = [-1, 24, 116, 232, 464, 1024] elif width_mult == 1.5: self.stage_out_channels = [-1, 24, 176, 352, 704, 1024] elif width_mult == 2.0: self.stage_out_channels = [-1, 24, 244, 488, 976, 2048] else: raise ValueError( """Width multiplier should be in [0.5, 1.0, 1.5, 2.0]. Current value: {}""".format(width_mult)) # building first layer input_channel = self.stage_out_channels[1] self.conv1 = conv_bn(3, input_channel, 2) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.features = [] # building inverted residual blocks for idxstage in range(len(self.stage_repeats)): numrepeat = self.stage_repeats[idxstage] output_channel = self.stage_out_channels[idxstage+2] for i in range(numrepeat): if i == 0: #inp, oup, stride, benchmodel): self.features.append(InvertedResidual(input_channel, output_channel, 2, 2)) else: self.features.append(InvertedResidual(input_channel, output_channel, 1, 1)) input_channel = output_channel # make it nn.Sequential self.features = nn.Sequential(*self.features) # building last several layers self.conv_last = conv_1x1_bn(input_channel, self.stage_out_channels[-1]) self.globalpool = nn.Sequential(nn.AvgPool2d(int(input_size/32))) # building classifier self.classifier = nn.Sequential(nn.Linear(self.stage_out_channels[-1], n_class)) def forward(self, x): x = self.conv1(x) x = self.maxpool(x) x = self.features(x) x = self.conv_last(x) x = self.globalpool(x) x = x.view(-1, self.stage_out_channels[-1]) x = self.classifier(x) return x