import math import torch.nn as nn import pdb from espnet.nets.pytorch_backend.transformer.convolution import Swish def conv3x3(in_planes, out_planes, stride=1): """conv3x3. :param in_planes: int, number of channels in the input sequence. :param out_planes: int, number of channels produced by the convolution. :param stride: int, size of the convolving kernel. """ return nn.Conv2d( in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False, ) def downsample_basic_block(inplanes, outplanes, stride): """downsample_basic_block. :param inplanes: int, number of channels in the input sequence. :param outplanes: int, number of channels produced by the convolution. :param stride: int, size of the convolving kernel. """ return nn.Sequential( nn.Conv2d( inplanes, outplanes, kernel_size=1, stride=stride, bias=False, ), nn.BatchNorm2d(outplanes), ) class BasicBlock(nn.Module): expansion = 1 def __init__( self, inplanes, planes, stride=1, downsample=None, relu_type="swish", ): """__init__. :param inplanes: int, number of channels in the input sequence. :param planes: int, number of channels produced by the convolution. :param stride: int, size of the convolving kernel. :param downsample: boolean, if True, the temporal resolution is downsampled. :param relu_type: str, type of activation function. """ super(BasicBlock, self).__init__() assert relu_type in ["relu", "prelu", "swish"] self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) if relu_type == "relu": self.relu1 = nn.ReLU(inplace=True) self.relu2 = nn.ReLU(inplace=True) elif relu_type == "prelu": self.relu1 = nn.PReLU(num_parameters=planes) self.relu2 = nn.PReLU(num_parameters=planes) elif relu_type == "swish": self.relu1 = Swish() self.relu2 = Swish() else: raise NotImplementedError # -------- self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): """forward. :param x: torch.Tensor, input tensor with input size (B, C, T, H, W). """ residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu1(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu2(out) return out class ResNet(nn.Module): def __init__( self, block, layers, relu_type="swish", ): super(ResNet, self).__init__() self.inplanes = 64 self.relu_type = relu_type self.downsample_block = downsample_basic_block self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AdaptiveAvgPool2d(1) def _make_layer(self, block, planes, blocks, stride=1): """_make_layer. :param block: torch.nn.Module, class of blocks. :param planes: int, number of channels produced by the convolution. :param blocks: int, number of layers in a block. :param stride: int, size of the convolving kernel. """ downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = self.downsample_block( inplanes=self.inplanes, outplanes=planes*block.expansion, stride=stride, ) layers = [] layers.append( block( self.inplanes, planes, stride, downsample, relu_type=self.relu_type, ) ) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append( block( self.inplanes, planes, relu_type=self.relu_type, ) ) return nn.Sequential(*layers) def forward(self, x): """forward. :param x: torch.Tensor, input tensor with input size (B, C, T, H, W). """ x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) return x