File size: 11,356 Bytes
09481f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

# Copyright 2019 Shigeki Karita
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

"""Encoder definition."""

import torch

from espnet.nets.pytorch_backend.nets_utils import rename_state_dict
#from espnet.nets.pytorch_backend.transducer.vgg import VGG2L
from espnet.nets.pytorch_backend.transformer.attention import (
    MultiHeadedAttention,  # noqa: H301
    RelPositionMultiHeadedAttention,  # noqa: H301
    LegacyRelPositionMultiHeadedAttention,  # noqa: H301
)
from espnet.nets.pytorch_backend.transformer.convolution import ConvolutionModule
from espnet.nets.pytorch_backend.transformer.embedding import (
    PositionalEncoding,  # noqa: H301
    RelPositionalEncoding,  # noqa: H301
    LegacyRelPositionalEncoding, # noqa: H301
)
from espnet.nets.pytorch_backend.transformer.encoder_layer import EncoderLayer
from espnet.nets.pytorch_backend.transformer.layer_norm import LayerNorm
from espnet.nets.pytorch_backend.transformer.multi_layer_conv import Conv1dLinear
from espnet.nets.pytorch_backend.transformer.multi_layer_conv import MultiLayeredConv1d
from espnet.nets.pytorch_backend.transformer.positionwise_feed_forward import (
    PositionwiseFeedForward,  # noqa: H301
)
from espnet.nets.pytorch_backend.transformer.repeat import repeat
from espnet.nets.pytorch_backend.transformer.subsampling import Conv2dSubsampling
from espnet.nets.pytorch_backend.transformer.raw_embeddings import VideoEmbedding
from espnet.nets.pytorch_backend.transformer.raw_embeddings import AudioEmbedding
from espnet.nets.pytorch_backend.backbones.conv3d_extractor  import Conv3dResNet
from espnet.nets.pytorch_backend.backbones.conv1d_extractor  import Conv1dResNet


def _pre_hook(
    state_dict,
    prefix,
    local_metadata,
    strict,
    missing_keys,
    unexpected_keys,
    error_msgs,
):
    # https://github.com/espnet/espnet/commit/21d70286c354c66c0350e65dc098d2ee236faccc#diff-bffb1396f038b317b2b64dd96e6d3563
    rename_state_dict(prefix + "input_layer.", prefix + "embed.", state_dict)
    # https://github.com/espnet/espnet/commit/3d422f6de8d4f03673b89e1caef698745ec749ea#diff-bffb1396f038b317b2b64dd96e6d3563
    rename_state_dict(prefix + "norm.", prefix + "after_norm.", state_dict)


class Encoder(torch.nn.Module):
    """Transformer encoder module.

    :param int idim: input dim
    :param int attention_dim: dimention of attention
    :param int attention_heads: the number of heads of multi head attention
    :param int linear_units: the number of units of position-wise feed forward
    :param int num_blocks: the number of decoder blocks
    :param float dropout_rate: dropout rate
    :param float attention_dropout_rate: dropout rate in attention
    :param float positional_dropout_rate: dropout rate after adding positional encoding
    :param str or torch.nn.Module input_layer: input layer type
    :param class pos_enc_class: PositionalEncoding or ScaledPositionalEncoding
    :param bool normalize_before: whether to use layer_norm before the first block
    :param bool concat_after: whether to concat attention layer's input and output
        if True, additional linear will be applied.
        i.e. x -> x + linear(concat(x, att(x)))
        if False, no additional linear will be applied. i.e. x -> x + att(x)
    :param str positionwise_layer_type: linear of conv1d
    :param int positionwise_conv_kernel_size: kernel size of positionwise conv1d layer
    :param str encoder_attn_layer_type: encoder attention layer type
    :param bool macaron_style: whether to use macaron style for positionwise layer
    :param bool use_cnn_module: whether to use convolution module
    :param bool zero_triu: whether to zero the upper triangular part of attention matrix
    :param int cnn_module_kernel: kernerl size of convolution module
    :param int padding_idx: padding_idx for input_layer=embed
    """

    def __init__(
        self,
        idim,
        attention_dim=256,
        attention_heads=4,
        linear_units=2048,
        num_blocks=6,
        dropout_rate=0.1,
        positional_dropout_rate=0.1,
        attention_dropout_rate=0.0,
        input_layer="conv2d",
        pos_enc_class=PositionalEncoding,
        normalize_before=True,
        concat_after=False,
        positionwise_layer_type="linear",
        positionwise_conv_kernel_size=1,
        macaron_style=False,
        encoder_attn_layer_type="mha",
        use_cnn_module=False,
        zero_triu=False,
        cnn_module_kernel=31,
        padding_idx=-1,
        relu_type="prelu",
        a_upsample_ratio=1,
    ):
        """Construct an Encoder object."""
        super(Encoder, self).__init__()
        self._register_load_state_dict_pre_hook(_pre_hook)

        if encoder_attn_layer_type == "rel_mha":
            pos_enc_class = RelPositionalEncoding
        elif encoder_attn_layer_type == "legacy_rel_mha":
            pos_enc_class = LegacyRelPositionalEncoding
        # -- frontend module.
        if input_layer == "conv1d":
            self.frontend = Conv1dResNet(
                relu_type=relu_type,
                a_upsample_ratio=a_upsample_ratio,
            )
        elif input_layer == "conv3d":
            self.frontend = Conv3dResNet(relu_type=relu_type)
        else:
            self.frontend = None
        # -- backend module.
        if input_layer == "linear":
            self.embed = torch.nn.Sequential(
                torch.nn.Linear(idim, attention_dim),
                torch.nn.LayerNorm(attention_dim),
                torch.nn.Dropout(dropout_rate),
                torch.nn.ReLU(),
                pos_enc_class(attention_dim, positional_dropout_rate),
            )
        elif input_layer == "conv2d":
            self.embed = Conv2dSubsampling(
                idim,
                attention_dim,
                dropout_rate,
                pos_enc_class(attention_dim, dropout_rate),
            )
        elif input_layer == "vgg2l":
            self.embed = VGG2L(idim, attention_dim)
        elif input_layer == "embed":
            self.embed = torch.nn.Sequential(
                torch.nn.Embedding(idim, attention_dim, padding_idx=padding_idx),
                pos_enc_class(attention_dim, positional_dropout_rate),
            )
        elif isinstance(input_layer, torch.nn.Module):
            self.embed = torch.nn.Sequential(
                input_layer, pos_enc_class(attention_dim, positional_dropout_rate),
            )
        elif input_layer in ["conv1d", "conv3d"]:
            self.embed = torch.nn.Sequential(
                torch.nn.Linear(512, attention_dim),
                pos_enc_class(attention_dim, positional_dropout_rate)
            )
        elif input_layer is None:
            self.embed = torch.nn.Sequential(
                pos_enc_class(attention_dim, positional_dropout_rate)
            )
        else:
            raise ValueError("unknown input_layer: " + input_layer)
        self.normalize_before = normalize_before
        if positionwise_layer_type == "linear":
            positionwise_layer = PositionwiseFeedForward
            positionwise_layer_args = (attention_dim, linear_units, dropout_rate)
        elif positionwise_layer_type == "conv1d":
            positionwise_layer = MultiLayeredConv1d
            positionwise_layer_args = (
                attention_dim,
                linear_units,
                positionwise_conv_kernel_size,
                dropout_rate,
            )
        elif positionwise_layer_type == "conv1d-linear":
            positionwise_layer = Conv1dLinear
            positionwise_layer_args = (
                attention_dim,
                linear_units,
                positionwise_conv_kernel_size,
                dropout_rate,
            )
        else:
            raise NotImplementedError("Support only linear or conv1d.")

        if encoder_attn_layer_type == "mha":
            encoder_attn_layer = MultiHeadedAttention
            encoder_attn_layer_args = (
                attention_heads,
                attention_dim,
                attention_dropout_rate,
            )
        elif encoder_attn_layer_type == "legacy_rel_mha":
            encoder_attn_layer = LegacyRelPositionMultiHeadedAttention
            encoder_attn_layer_args = (
                attention_heads,
                attention_dim,
                attention_dropout_rate,
            )
        elif encoder_attn_layer_type == "rel_mha":
            encoder_attn_layer = RelPositionMultiHeadedAttention
            encoder_attn_layer_args = (
                attention_heads,
                attention_dim,
                attention_dropout_rate,
                zero_triu,
            )
        else:
            raise ValueError("unknown encoder_attn_layer: " + encoder_attn_layer)

        convolution_layer = ConvolutionModule
        convolution_layer_args = (attention_dim, cnn_module_kernel)

        self.encoders = repeat(
            num_blocks,
            lambda: EncoderLayer(
                attention_dim,
                encoder_attn_layer(*encoder_attn_layer_args),
                positionwise_layer(*positionwise_layer_args),
                convolution_layer(*convolution_layer_args) if use_cnn_module else None,
                dropout_rate,
                normalize_before,
                concat_after,
                macaron_style,
            ),
        )
        if self.normalize_before:
            self.after_norm = LayerNorm(attention_dim)

    def forward(self, xs, masks, extract_resnet_feats=False):
        """Encode input sequence.

        :param torch.Tensor xs: input tensor
        :param torch.Tensor masks: input mask
        :param str extract_features: the position for feature extraction
        :return: position embedded tensor and mask
        :rtype Tuple[torch.Tensor, torch.Tensor]:
        """
        if isinstance(self.frontend, (Conv1dResNet, Conv3dResNet)):
            xs = self.frontend(xs)
        if extract_resnet_feats:
            return xs

        if isinstance(self.embed, Conv2dSubsampling):
            xs, masks = self.embed(xs, masks)
        else:
            xs = self.embed(xs)
        
        xs, masks = self.encoders(xs, masks)

        if isinstance(xs, tuple):
            xs = xs[0]

        if self.normalize_before:
            xs = self.after_norm(xs)

        return xs, masks

    def forward_one_step(self, xs, masks, cache=None):
        """Encode input frame.

        :param torch.Tensor xs: input tensor
        :param torch.Tensor masks: input mask
        :param List[torch.Tensor] cache: cache tensors
        :return: position embedded tensor, mask and new cache
        :rtype Tuple[torch.Tensor, torch.Tensor, List[torch.Tensor]]:
        """
        if isinstance(self.frontend, (Conv1dResNet, Conv3dResNet)):
            xs = self.frontend(xs)

        if isinstance(self.embed, Conv2dSubsampling):
            xs, masks = self.embed(xs, masks)
        else:
            xs = self.embed(xs)
        if cache is None:
            cache = [None for _ in range(len(self.encoders))]
        new_cache = []
        for c, e in zip(cache, self.encoders):
            xs, masks = e(xs, masks, cache=c)
            new_cache.append(xs)
        if self.normalize_before:
            xs = self.after_norm(xs)
        return xs, masks, new_cache