File size: 5,843 Bytes
9f95946 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import gradio as gr
from PIL import Image
import torch
import re
import os
import requests
from customization import customize_vae_decoder
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel, DDIMScheduler, EulerDiscreteScheduler
from torchvision import transforms
from attribution import MappingNetwork
import math
from typing import List
from PIL import Image
import cv2
import numpy as np
import torch
is_gpu_busy = False
PRETRAINED_MODEL_NAME_OR_PATH = "./checkpoints/"
def get_image_grid(images: List[Image.Image]) -> Image:
num_images = len(images)
cols = 3#int(math.ceil(math.sqrt(num_images)))
rows = 1#int(math.ceil(num_images / cols))
width, height = images[0].size
grid_image = Image.new('RGB', (cols * width, rows * height))
for i, img in enumerate(images):
x = i % cols
y = i // cols
grid_image.paste(img, (x * width, y * height))
return grid_image
class AttributionModel:
def __init__(self):
self.pipe = StableDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2')#, safety_checker=None, torch_dtype=torch.float16)
self.pipe = self.pipe.to("cuda")
self.resize_transform = transforms.Resize(512, interpolation=transforms.InterpolationMode.BILINEAR)
self.vae = AutoencoderKL.from_pretrained(
'stabilityai/stable-diffusion-2', subfolder="vae"
)
self.vae = customize_vae_decoder(self.vae, 128, "qkv", "all", False, 1.0)
self.mapping_network = MappingNetwork(32, 0, 128, None, num_layers=2, w_avg_beta=None, normalization = False).to("cuda")
from torchvision.models import resnet50, ResNet50_Weights
self.decoding_network = resnet50(weights=ResNet50_Weights.IMAGENET1K_V2)
self.decoding_network.fc = torch.nn.Linear(2048,32)
self.vae.decoder.load_state_dict(torch.load(os.path.join(PRETRAINED_MODEL_NAME_OR_PATH, 'vae_decoder.pth')))
self.mapping_network.load_state_dict(torch.load(os.path.join(PRETRAINED_MODEL_NAME_OR_PATH, 'mapping_network.pth')))
self.decoding_network.load_state_dict(torch.load(os.path.join(PRETRAINED_MODEL_NAME_OR_PATH, 'decoding_network.pth')))
self.vae = self.vae.to("cuda")
self.mapping_network = self.mapping_network.to("cuda")
self.decoding_network = self.decoding_network.to("cuda")
self.test_norm = transforms.Compose(
[
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
]
)
def infer(self, prompt, negative, guidance_scale):
images = []
with torch.no_grad():
out_latents = self.pipe([prompt], output_type="latent", num_inference_steps=10, guidance_scale=guidance_scale).images
image = self.inference_with_attribution(out_latents)
print(image[0])
# image = self.pipe.numpy_to_pil(image)
# image[0].save("im1.jpg")
return [image[0]]*3 #, "caption") #get_image_grid(images)
def inference_without_attribution(self, latents):
latents = 1 / 0.18215 * latents
with torch.no_grad():
image = self.pipe.vae.decode(latents).sample
image = image.clamp(-1,1)
return image
def get_phis(self, phi_dimension, batch_size ,eps = 1e-8):
phi_length = phi_dimension
b = batch_size
phi = torch.empty(b,phi_length).uniform_(0,1)
return torch.bernoulli(phi) + eps
def inference_with_attribution(self, latents, key=None):
if key==None:
key = self.get_phis(32, 1)
latents = 1 / 0.18215 * latents
with torch.no_grad():
image = self.vae.decode(latents, self.mapping_network(key.cuda())).sample
image = image.clamp(-1,1)
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image
def postprocess(self, image):
image = self.resize_transform(image)
return image
def detect_key(self, image):
reconstructed_keys = self.decoding_network(self.test_norm((image / 2 + 0.5).clamp(0, 1)))
return reconstructed_keys
attribution_model = AttributionModel()
with gr.Blocks() as demo:
with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
with gr.Column():
text = gr.Textbox(
label="Enter your prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
elem_id="prompt-text-input",
).style(
border=(True, False, True, True),
rounded=(True, False, False, True),
container=False,
)
negative = gr.Textbox(
label="Enter your negative prompt",
show_label=False,
max_lines=1,
placeholder="Enter a negative prompt",
elem_id="negative-prompt-text-input",
).style(
border=(True, False, True, True),
rounded=(True, False, False, True),
container=False,
)
btn = gr.Button("Generate image").style(full_width=False)
with gr.Row():
img_output_simple = gr.Image()
img_output_attribute = gr.Image()
img_output_diff = gr.Image()
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale", minimum=0, maximum=10, value=9, step=0.1
)
btn.click(attribution_model.infer, inputs=[text, negative, guidance_scale], outputs=[img_output_simple, img_output_attribute, img_output_diff], postprocess=False)
if __name__=="__main__":
demo.queue(concurrency_count=1, max_size=20).launch(max_threads=50) |