Spaces:
Running
on
Zero
Running
on
Zero
github-actions[bot]
commited on
Commit
·
166c454
1
Parent(s):
d35ffe9
Sync with https://github.com/mozilla-ai/speech-to-text-finetune
Browse files
app.py
CHANGED
@@ -1,34 +1,39 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import spaces
|
|
|
4 |
from transformers import pipeline, Pipeline
|
5 |
|
6 |
is_hf_space = os.getenv("IS_HF_SPACE")
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
27 |
)
|
28 |
|
|
|
|
|
|
|
|
|
29 |
processor = WhisperProcessor.from_pretrained(model_dir)
|
30 |
-
tokenizer = WhisperTokenizer.from_pretrained(model_dir, task="transcribe")
|
31 |
-
feature_extractor = WhisperFeatureExtractor.from_pretrained(model_dir)
|
32 |
model = WhisperForConditionalGeneration.from_pretrained(model_dir)
|
33 |
|
34 |
try:
|
@@ -36,29 +41,52 @@ def _load_local_model(model_dir: str) -> Pipeline:
|
|
36 |
task="automatic-speech-recognition",
|
37 |
model=model,
|
38 |
processor=processor,
|
39 |
-
|
40 |
-
feature_extractor=feature_extractor,
|
41 |
)
|
42 |
except Exception as e:
|
43 |
return str(e)
|
44 |
|
45 |
|
46 |
-
def _load_hf_model(model_repo_id: str) -> Pipeline:
|
47 |
try:
|
48 |
return pipeline(
|
49 |
"automatic-speech-recognition",
|
50 |
model=model_repo_id,
|
|
|
51 |
)
|
52 |
except Exception as e:
|
53 |
return str(e)
|
54 |
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
@spaces.GPU(duration=30)
|
57 |
def transcribe(
|
58 |
dropdown_model_id: str,
|
59 |
hf_model_id: str,
|
60 |
local_model_id: str,
|
61 |
audio: gr.Audio,
|
|
|
62 |
) -> str:
|
63 |
if dropdown_model_id and not hf_model_id and not local_model_id:
|
64 |
dropdown_model_id = dropdown_model_id.split(" (")[0]
|
@@ -74,7 +102,21 @@ def transcribe(
|
|
74 |
if isinstance(pipe, str):
|
75 |
# Exception raised when loading
|
76 |
return f"⚠️ Error: {pipe}"
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
return text
|
79 |
|
80 |
|
@@ -88,7 +130,7 @@ def setup_gradio_demo():
|
|
88 |
"""
|
89 |
)
|
90 |
### Model selection ###
|
91 |
-
|
92 |
with gr.Row():
|
93 |
with gr.Column():
|
94 |
dropdown_model = gr.Dropdown(
|
@@ -106,19 +148,27 @@ def setup_gradio_demo():
|
|
106 |
)
|
107 |
|
108 |
### Transcription ###
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
116 |
transcribe_button = gr.Button("Transcribe")
|
117 |
transcribe_output = gr.Text(label="Output")
|
118 |
|
119 |
transcribe_button.click(
|
120 |
fn=transcribe,
|
121 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
outputs=transcribe_output,
|
123 |
)
|
124 |
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import spaces
|
4 |
+
from huggingface_hub import get_collection, HfApi
|
5 |
from transformers import pipeline, Pipeline
|
6 |
|
7 |
is_hf_space = os.getenv("IS_HF_SPACE")
|
8 |
+
|
9 |
+
|
10 |
+
def get_dropdown_model_ids():
|
11 |
+
mozilla_ai_model_ids = []
|
12 |
+
# Get model ids from collection and append the language in () from the model's metadata
|
13 |
+
for model_i in get_collection(
|
14 |
+
"mozilla-ai/common-voice-whisper-67b847a74ad7561781aa10fd"
|
15 |
+
).items:
|
16 |
+
model_metadata = HfApi().model_info(model_i.item_id)
|
17 |
+
language = model_metadata.card_data.model_name.split("on ")[1]
|
18 |
+
mozilla_ai_model_ids.append(model_i.item_id + f" ({language})")
|
19 |
+
|
20 |
+
return (
|
21 |
+
[""]
|
22 |
+
+ mozilla_ai_model_ids
|
23 |
+
+ [
|
24 |
+
"openai/whisper-tiny (Multilingual)",
|
25 |
+
"openai/whisper-small (Multilingual)",
|
26 |
+
"openai/whisper-medium (Multilingual)",
|
27 |
+
"openai/whisper-large-v3 (Multilingual)",
|
28 |
+
"openai/whisper-large-v3-turbo (Multilingual)",
|
29 |
+
]
|
30 |
)
|
31 |
|
32 |
+
|
33 |
+
def _load_local_model(model_dir: str) -> Pipeline | str:
|
34 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
35 |
+
|
36 |
processor = WhisperProcessor.from_pretrained(model_dir)
|
|
|
|
|
37 |
model = WhisperForConditionalGeneration.from_pretrained(model_dir)
|
38 |
|
39 |
try:
|
|
|
41 |
task="automatic-speech-recognition",
|
42 |
model=model,
|
43 |
processor=processor,
|
44 |
+
chunk_length_s=30, # max input duration for whisper
|
|
|
45 |
)
|
46 |
except Exception as e:
|
47 |
return str(e)
|
48 |
|
49 |
|
50 |
+
def _load_hf_model(model_repo_id: str) -> Pipeline | str:
|
51 |
try:
|
52 |
return pipeline(
|
53 |
"automatic-speech-recognition",
|
54 |
model=model_repo_id,
|
55 |
+
chunk_length_s=30, # max input duration for whisper
|
56 |
)
|
57 |
except Exception as e:
|
58 |
return str(e)
|
59 |
|
60 |
|
61 |
+
# Copied from https://github.com/openai/whisper/blob/517a43ecd132a2089d85f4ebc044728a71d49f6e/whisper/utils.py#L50
|
62 |
+
def format_timestamp(
|
63 |
+
seconds: float, always_include_hours: bool = False, decimal_marker: str = "."
|
64 |
+
):
|
65 |
+
assert seconds >= 0, "non-negative timestamp expected"
|
66 |
+
milliseconds = round(seconds * 1000.0)
|
67 |
+
|
68 |
+
hours = milliseconds // 3_600_000
|
69 |
+
milliseconds -= hours * 3_600_000
|
70 |
+
|
71 |
+
minutes = milliseconds // 60_000
|
72 |
+
milliseconds -= minutes * 60_000
|
73 |
+
|
74 |
+
seconds = milliseconds // 1_000
|
75 |
+
milliseconds -= seconds * 1_000
|
76 |
+
|
77 |
+
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
|
78 |
+
return (
|
79 |
+
f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
|
80 |
+
)
|
81 |
+
|
82 |
+
|
83 |
@spaces.GPU(duration=30)
|
84 |
def transcribe(
|
85 |
dropdown_model_id: str,
|
86 |
hf_model_id: str,
|
87 |
local_model_id: str,
|
88 |
audio: gr.Audio,
|
89 |
+
show_timestamps: bool,
|
90 |
) -> str:
|
91 |
if dropdown_model_id and not hf_model_id and not local_model_id:
|
92 |
dropdown_model_id = dropdown_model_id.split(" (")[0]
|
|
|
102 |
if isinstance(pipe, str):
|
103 |
# Exception raised when loading
|
104 |
return f"⚠️ Error: {pipe}"
|
105 |
+
|
106 |
+
output = pipe(
|
107 |
+
audio,
|
108 |
+
generate_kwargs={"task": "transcribe"},
|
109 |
+
batch_size=16,
|
110 |
+
return_timestamps=show_timestamps,
|
111 |
+
)
|
112 |
+
text = output["text"]
|
113 |
+
if show_timestamps:
|
114 |
+
timestamps = output["chunks"]
|
115 |
+
timestamps = [
|
116 |
+
f"[{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}"
|
117 |
+
for chunk in timestamps
|
118 |
+
]
|
119 |
+
text = "\n".join(str(feature) for feature in timestamps)
|
120 |
return text
|
121 |
|
122 |
|
|
|
130 |
"""
|
131 |
)
|
132 |
### Model selection ###
|
133 |
+
model_ids = get_dropdown_model_ids()
|
134 |
with gr.Row():
|
135 |
with gr.Column():
|
136 |
dropdown_model = gr.Dropdown(
|
|
|
148 |
)
|
149 |
|
150 |
### Transcription ###
|
151 |
+
with gr.Group():
|
152 |
+
audio_input = gr.Audio(
|
153 |
+
sources=["microphone", "upload"],
|
154 |
+
type="filepath",
|
155 |
+
label="Record a message / Upload audio file",
|
156 |
+
show_download_button=True,
|
157 |
+
)
|
158 |
+
timestamps_check = gr.Checkbox(label="Show timestamps")
|
159 |
+
|
160 |
transcribe_button = gr.Button("Transcribe")
|
161 |
transcribe_output = gr.Text(label="Output")
|
162 |
|
163 |
transcribe_button.click(
|
164 |
fn=transcribe,
|
165 |
+
inputs=[
|
166 |
+
dropdown_model,
|
167 |
+
user_model,
|
168 |
+
local_model,
|
169 |
+
audio_input,
|
170 |
+
timestamps_check,
|
171 |
+
],
|
172 |
outputs=transcribe_output,
|
173 |
)
|
174 |
|