Add init demo version
Browse files
app.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import csv
|
2 |
+
from pathlib import Path
|
3 |
+
from typing import Tuple
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
7 |
+
from whisper_bidec import decode_wav, get_logits_processor, load_corpus_from_sentences
|
8 |
+
|
9 |
+
|
10 |
+
def _parse_file(file_path: str) -> list[str]:
|
11 |
+
"""Parse .txt / .md / .csv and return its content as a list of strings by splitting per new line or row."""
|
12 |
+
|
13 |
+
if file_path.endswith(".csv"):
|
14 |
+
sentences = []
|
15 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
16 |
+
reader = csv.reader(f)
|
17 |
+
for row in reader:
|
18 |
+
sentences.append(row)
|
19 |
+
else:
|
20 |
+
with open(file_path, "r") as f:
|
21 |
+
sentences = f.readlines()
|
22 |
+
return sentences
|
23 |
+
|
24 |
+
|
25 |
+
def transcribe(
|
26 |
+
processor_name: str,
|
27 |
+
audio: str,
|
28 |
+
bias_strength: float,
|
29 |
+
bias_text: str | None,
|
30 |
+
bias_text_file: str | None,
|
31 |
+
) -> Tuple[str, str]:
|
32 |
+
processor = WhisperProcessor.from_pretrained(processor_name)
|
33 |
+
model = WhisperForConditionalGeneration.from_pretrained(processor_name)
|
34 |
+
|
35 |
+
sentences = ""
|
36 |
+
|
37 |
+
if bias_text:
|
38 |
+
sentences = bias_text.split(",")
|
39 |
+
elif Path(bias_text_file).is_file():
|
40 |
+
sentences = _parse_file(bias_text_file)
|
41 |
+
|
42 |
+
if sentences:
|
43 |
+
corpus = load_corpus_from_sentences(sentences, processor)
|
44 |
+
logits_processor = get_logits_processor(
|
45 |
+
corpus=corpus, processor=processor, bias_towards_lm=bias_strength
|
46 |
+
)
|
47 |
+
text_with_bias = decode_wav(
|
48 |
+
model, processor, audio, logits_processor=logits_processor
|
49 |
+
)
|
50 |
+
else:
|
51 |
+
text_with_bias = ""
|
52 |
+
|
53 |
+
text_no_bias = decode_wav(model, processor, audio, logits_processor=None)
|
54 |
+
|
55 |
+
return text_no_bias, text_with_bias
|
56 |
+
|
57 |
+
|
58 |
+
def setup_gradio_demo():
|
59 |
+
css = """
|
60 |
+
#centered-column {
|
61 |
+
display: flex;
|
62 |
+
justify-content: center;
|
63 |
+
align-items: center;
|
64 |
+
flex-direction: column;
|
65 |
+
text-align: center;
|
66 |
+
}
|
67 |
+
"""
|
68 |
+
with gr.Blocks(css=css) as demo:
|
69 |
+
gr.Markdown("# Whisper Bidec Demo")
|
70 |
+
|
71 |
+
gr.Markdown("## Step 1: Select a Whisper model")
|
72 |
+
processor = gr.Textbox(
|
73 |
+
value="openai/whisper-tiny.en", label="Whisper Model from Hugging Face"
|
74 |
+
)
|
75 |
+
|
76 |
+
gr.Markdown("## Step 2: Upload your audio file")
|
77 |
+
audio_clip = gr.Audio(type="filepath", label="Upload a WAV file")
|
78 |
+
|
79 |
+
gr.Markdown("## Step 3: Set your biasing text")
|
80 |
+
with gr.Row():
|
81 |
+
with gr.Column(scale=20):
|
82 |
+
gr.Markdown(
|
83 |
+
"You can add multiple possible sentences by separating them with a comma <,>."
|
84 |
+
)
|
85 |
+
bias_text = gr.Textbox(label="Write your biasing text here")
|
86 |
+
with gr.Column(scale=1, elem_id="centered-column"):
|
87 |
+
gr.Markdown("## OR")
|
88 |
+
with gr.Column(scale=20):
|
89 |
+
gr.Markdown(
|
90 |
+
"Note that each new line (.txt / .md) or row (.csv) will be treated as a separate sentence to bias towards to."
|
91 |
+
)
|
92 |
+
bias_text_file = gr.File(
|
93 |
+
label="Upload a file with multiple lines of text",
|
94 |
+
file_types=[".txt", ".md", ".csv"],
|
95 |
+
)
|
96 |
+
|
97 |
+
gr.Markdown("## Step 4: Set how much you want to bias towards the LM")
|
98 |
+
bias_amount = gr.Slider(
|
99 |
+
minimum=0.0,
|
100 |
+
maximum=1.0,
|
101 |
+
value=0.5,
|
102 |
+
step=0.1,
|
103 |
+
label="Bias strength",
|
104 |
+
interactive=True,
|
105 |
+
)
|
106 |
+
|
107 |
+
gr.Markdown("## Step 5: Get your transcription before and after biasing")
|
108 |
+
transcribe_button = gr.Button("Transcribe")
|
109 |
+
|
110 |
+
with gr.Row():
|
111 |
+
with gr.Column():
|
112 |
+
output = gr.Text(label="Output")
|
113 |
+
with gr.Column():
|
114 |
+
biased_output = gr.Text(label="Biased output")
|
115 |
+
|
116 |
+
transcribe_button.click(
|
117 |
+
fn=transcribe,
|
118 |
+
inputs=[
|
119 |
+
processor,
|
120 |
+
audio_clip,
|
121 |
+
bias_amount,
|
122 |
+
bias_text,
|
123 |
+
bias_text_file,
|
124 |
+
],
|
125 |
+
outputs=[output, biased_output],
|
126 |
+
)
|
127 |
+
demo.launch()
|
128 |
+
|
129 |
+
|
130 |
+
if __name__ == "__main__":
|
131 |
+
setup_gradio_demo()
|