Fix mic audio input
Browse files
app.py
CHANGED
@@ -1,10 +1,12 @@
|
|
1 |
import csv
|
2 |
-
|
|
|
3 |
from typing import Tuple
|
4 |
|
5 |
import gradio as gr
|
6 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
7 |
from whisper_bidec import decode_wav, get_logits_processor, load_corpus_from_sentences
|
|
|
8 |
|
9 |
|
10 |
def _parse_file(file_path: str) -> list[str]:
|
@@ -22,9 +24,22 @@ def _parse_file(file_path: str) -> list[str]:
|
|
22 |
return sentences
|
23 |
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
def transcribe(
|
26 |
processor_name: str,
|
27 |
-
|
28 |
bias_strength: float,
|
29 |
bias_text: str | None,
|
30 |
bias_text_file: str | None,
|
@@ -36,21 +51,25 @@ def transcribe(
|
|
36 |
|
37 |
if bias_text:
|
38 |
sentences = bias_text.split(",")
|
39 |
-
elif
|
40 |
sentences = _parse_file(bias_text_file)
|
41 |
|
|
|
|
|
42 |
if sentences:
|
43 |
corpus = load_corpus_from_sentences(sentences, processor)
|
44 |
logits_processor = get_logits_processor(
|
45 |
corpus=corpus, processor=processor, bias_towards_lm=bias_strength
|
46 |
)
|
47 |
text_with_bias = decode_wav(
|
48 |
-
model, processor,
|
49 |
)
|
50 |
else:
|
51 |
text_with_bias = ""
|
52 |
|
53 |
-
text_no_bias = decode_wav(
|
|
|
|
|
54 |
|
55 |
return text_no_bias, text_with_bias
|
56 |
|
|
|
1 |
import csv
|
2 |
+
import os
|
3 |
+
import tempfile
|
4 |
from typing import Tuple
|
5 |
|
6 |
import gradio as gr
|
7 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
8 |
from whisper_bidec import decode_wav, get_logits_processor, load_corpus_from_sentences
|
9 |
+
from pydub import AudioSegment
|
10 |
|
11 |
|
12 |
def _parse_file(file_path: str) -> list[str]:
|
|
|
24 |
return sentences
|
25 |
|
26 |
|
27 |
+
def _convert_audio(input_audio_path: str) -> str:
|
28 |
+
"""Whisper decoder expects wav files with 16kHz sample rate and mono channel.
|
29 |
+
Convert the audio file to this format, save it in a tmp file and return the path.
|
30 |
+
"""
|
31 |
+
fd, tmp_path = tempfile.mkstemp(suffix=".wav")
|
32 |
+
os.close(fd) # Close file descriptor
|
33 |
+
|
34 |
+
audio = AudioSegment.from_file(input_audio_path)
|
35 |
+
audio = audio.set_channels(1).set_frame_rate(16000)
|
36 |
+
audio.export(tmp_path, format="wav")
|
37 |
+
return tmp_path
|
38 |
+
|
39 |
+
|
40 |
def transcribe(
|
41 |
processor_name: str,
|
42 |
+
audio_path: str,
|
43 |
bias_strength: float,
|
44 |
bias_text: str | None,
|
45 |
bias_text_file: str | None,
|
|
|
51 |
|
52 |
if bias_text:
|
53 |
sentences = bias_text.split(",")
|
54 |
+
elif bias_text_file:
|
55 |
sentences = _parse_file(bias_text_file)
|
56 |
|
57 |
+
converted_audio_path = _convert_audio(audio_path)
|
58 |
+
|
59 |
if sentences:
|
60 |
corpus = load_corpus_from_sentences(sentences, processor)
|
61 |
logits_processor = get_logits_processor(
|
62 |
corpus=corpus, processor=processor, bias_towards_lm=bias_strength
|
63 |
)
|
64 |
text_with_bias = decode_wav(
|
65 |
+
model, processor, converted_audio_path, logits_processor=logits_processor
|
66 |
)
|
67 |
else:
|
68 |
text_with_bias = ""
|
69 |
|
70 |
+
text_no_bias = decode_wav(
|
71 |
+
model, processor, converted_audio_path, logits_processor=None
|
72 |
+
)
|
73 |
|
74 |
return text_no_bias, text_with_bias
|
75 |
|