File size: 4,708 Bytes
8fed32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
---
title: Medgan
emoji: ⚡
colorFrom: blue
colorTo: gray
sdk: static
pinned: false
license: mit
short_description: The project focuses on brain tumor MRI scans and includes im
---
<<<<<<< HEAD
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
=======
[](https://github.com/mozaloom/medgan/actions/workflows/main.yml)
[](https://github.com/mozaloom/medgan/actions/workflows/push-docker.yml)
# MedGAN: Advanced Medical Image Generation
<img src="static/css/Blue_ABstract_Brain_Technology_Logo__1_-removebg-preview.png" alt="medgan Logo" width="120" style="margin-bottom: 20px;">
## Overview
MedGAN is a comprehensive framework for generating high-quality synthetic medical images using state-of-the-art Generative Adversarial Networks (GANs). The project focuses on brain tumor MRI scans and includes implementations of multiple cutting-edge GAN architectures optimized for medical imaging applications.
## Features
- **Multiple GAN Implementations:**
- DCGAN (Deep Convolutional GAN)
- ProGAN (Progressive Growing of GANs)
- StyleGAN2 (Style-based Generator with improvements)
- WGAN (Wasserstein GAN with gradient penalty)
- **Web Application Interface:**
- Generate synthetic brain MRI scans
- Detect tumor types from uploaded MRI images
- Interactive and user-friendly interface
- **Pre-trained Models:**
- Models for three tumor types: Glioma, Meningioma, and Pituitary
- ViT-based tumor detection model (92% accuracy)
## Architecture Performance Comparison
| Architecture | Image Quality | Training Stability | Generation Diversity | Training Speed |
|--------------|---------------|--------------------|-----------------------|---------------|
| ProGAN | ⭐⭐⭐⭐ | ⭐⭐⭐⭐⭐ | ⭐⭐⭐⭐ | ⭐⭐⭐ |
| StyleGAN2 | ⭐⭐⭐⭐⭐ | ⭐⭐⭐⭐ | ⭐⭐⭐⭐⭐ | ⭐⭐ |
| WGAN-GP | ⭐⭐⭐ | ⭐⭐⭐⭐ | ⭐⭐⭐ | ⭐⭐⭐⭐ |
| DCGAN | ⭐⭐⭐ | ⭐⭐⭐ | ⭐⭐ | ⭐⭐⭐⭐⭐ |
## Getting Started
### Prerequisites
- Python 3.9+
- PyTorch 1.9+
- Flask (for web application)
- CUDA-capable GPU (recommended)
### Installation
1. Clone the repository:
```bash
git clone https://github.com/mozaloom/medgan.git
cd medgan
```
2. Install required packages:
```bash
pip install -r requirements.txt
```
3. Run the web application:
```bash
python app.py
```
4. Access the web interface at `http://localhost:5000`
## Usage
### Web Application
The MedGAN web application offers two primary functionalities:
1. **Generate synthetic brain MRI scans:**
- Select tumor type (Glioma, Meningioma, Pituitary)
- Choose GAN architecture
- Generate high-quality synthetic MRI images
2. **Detect tumor types:**
- Upload brain MRI scans
- Receive AI-powered tumor classification
- View detection confidence scores
Check the individual model implementation files for specific training parameters.
## Project Structure
```
medgan/
├── app.py # Flask web application
├── medgan/ # Core GAN implementations
│ ├── dcgan.py
│ ├── progan.py
│ ├── stylegan.py
│ ├── wgan.py
│ └── vit.py
├── models/ # Pre-trained model weights
├── notebooks/ # Training notebooks
│ ├── dcgan/
│ ├── progan/
│ ├── stylegan/
│ └── wgan/
├── static/ # Web assets
└── templates/ # HTML templates
```
## Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
1. Fork the repository
2. Create your feature branch (`git checkout -b feature/amazing-feature`)
3. Commit your changes (`git commit -m 'Add some amazing feature'`)
4. Push to the branch (`git push origin feature/amazing-feature`)
5. Open a Pull Request
## License
This project is licensed under the MIT License - see the LICENSE file for details.
## Acknowledgments
- [Brain Tumor MRI Dataset](https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset/data) from Kaggle
- Research papers implementing the original GAN architectures:
- [DCGAN](https://arxiv.org/abs/1511.06434)
- [ProGAN](https://arxiv.org/abs/1710.10196)
- [StyleGAN2](https://arxiv.org/abs/1912.04958)
- [WGAN](https://arxiv.org/abs/1701.07875)
>>>>>>> c38c95c (Initial commit)
|