Spaces:
Runtime error
Runtime error
Commit
·
a2cda1e
1
Parent(s):
b3dd1cc
Update files/functions.py
Browse files- files/functions.py +1 -724
files/functions.py
CHANGED
@@ -25,8 +25,7 @@ import pypdf
|
|
25 |
from pypdf import PdfReader
|
26 |
from pypdf.errors import PdfReadError
|
27 |
|
28 |
-
import
|
29 |
-
from pdf2image import convert_from_path
|
30 |
import langdetect
|
31 |
from langdetect import detect_langs
|
32 |
|
@@ -170,725 +169,3 @@ id2label_layoutxlm = model_layoutxlm.config.id2label
|
|
170 |
label2id_layoutxlm = model_layoutxlm.config.label2id
|
171 |
num_labels_layoutxlm = len(id2label_layoutxlm)
|
172 |
|
173 |
-
## General
|
174 |
-
|
175 |
-
# get text and bounding boxes from an image
|
176 |
-
# https://stackoverflow.com/questions/61347755/how-can-i-get-line-coordinates-that-readed-by-tesseract
|
177 |
-
# https://medium.com/geekculture/tesseract-ocr-understanding-the-contents-of-documents-beyond-their-text-a98704b7c655
|
178 |
-
def get_data_paragraph(results, factor, conf_min=0):
|
179 |
-
|
180 |
-
data = {}
|
181 |
-
for i in range(len(results['line_num'])):
|
182 |
-
level = results['level'][i]
|
183 |
-
block_num = results['block_num'][i]
|
184 |
-
par_num = results['par_num'][i]
|
185 |
-
line_num = results['line_num'][i]
|
186 |
-
top, left = results['top'][i], results['left'][i]
|
187 |
-
width, height = results['width'][i], results['height'][i]
|
188 |
-
conf = results['conf'][i]
|
189 |
-
text = results['text'][i]
|
190 |
-
if not (text == '' or text.isspace()):
|
191 |
-
if conf >= conf_min:
|
192 |
-
tup = (text, left, top, width, height)
|
193 |
-
if block_num in list(data.keys()):
|
194 |
-
if par_num in list(data[block_num].keys()):
|
195 |
-
if line_num in list(data[block_num][par_num].keys()):
|
196 |
-
data[block_num][par_num][line_num].append(tup)
|
197 |
-
else:
|
198 |
-
data[block_num][par_num][line_num] = [tup]
|
199 |
-
else:
|
200 |
-
data[block_num][par_num] = {}
|
201 |
-
data[block_num][par_num][line_num] = [tup]
|
202 |
-
else:
|
203 |
-
data[block_num] = {}
|
204 |
-
data[block_num][par_num] = {}
|
205 |
-
data[block_num][par_num][line_num] = [tup]
|
206 |
-
|
207 |
-
# get paragraphs dicionnary with list of lines
|
208 |
-
par_data = {}
|
209 |
-
par_idx = 1
|
210 |
-
for _, b in data.items():
|
211 |
-
for _, p in b.items():
|
212 |
-
line_data = {}
|
213 |
-
line_idx = 1
|
214 |
-
for _, l in p.items():
|
215 |
-
line_data[line_idx] = l
|
216 |
-
line_idx += 1
|
217 |
-
par_data[par_idx] = line_data
|
218 |
-
par_idx += 1
|
219 |
-
|
220 |
-
# get lines of texts, grouped by paragraph
|
221 |
-
texts_pars = list()
|
222 |
-
row_indexes = list()
|
223 |
-
texts_lines = list()
|
224 |
-
texts_lines_par = list()
|
225 |
-
row_index = 0
|
226 |
-
for _,par in par_data.items():
|
227 |
-
count_lines = 0
|
228 |
-
lines_par = list()
|
229 |
-
for _,line in par.items():
|
230 |
-
if count_lines == 0: row_indexes.append(row_index)
|
231 |
-
line_text = ' '.join([item[0] for item in line])
|
232 |
-
texts_lines.append(line_text)
|
233 |
-
lines_par.append(line_text)
|
234 |
-
count_lines += 1
|
235 |
-
row_index += 1
|
236 |
-
# lines.append("\n")
|
237 |
-
row_index += 1
|
238 |
-
texts_lines_par.append(lines_par)
|
239 |
-
texts_pars.append(' '.join(lines_par))
|
240 |
-
# lines = lines[:-1]
|
241 |
-
|
242 |
-
# get paragraphes boxes (par_boxes)
|
243 |
-
# get lines boxes (line_boxes)
|
244 |
-
par_boxes = list()
|
245 |
-
par_idx = 1
|
246 |
-
line_boxes, lines_par_boxes = list(), list()
|
247 |
-
line_idx = 1
|
248 |
-
for _, par in par_data.items():
|
249 |
-
xmins, ymins, xmaxs, ymaxs = list(), list(), list(), list()
|
250 |
-
line_boxes_par = list()
|
251 |
-
count_line_par = 0
|
252 |
-
for _, line in par.items():
|
253 |
-
xmin, ymin = line[0][1], line[0][2]
|
254 |
-
xmax, ymax = (line[-1][1] + line[-1][3]), (line[-1][2] + line[-1][4])
|
255 |
-
line_boxes.append([int(xmin/factor), int(ymin/factor), int(xmax/factor), int(ymax/factor)])
|
256 |
-
line_boxes_par.append([int(xmin/factor), int(ymin/factor), int(xmax/factor), int(ymax/factor)])
|
257 |
-
xmins.append(xmin)
|
258 |
-
ymins.append(ymin)
|
259 |
-
xmaxs.append(xmax)
|
260 |
-
ymaxs.append(ymax)
|
261 |
-
line_idx += 1
|
262 |
-
count_line_par += 1
|
263 |
-
xmin, ymin, xmax, ymax = min(xmins), min(ymins), max(xmaxs), max(ymaxs)
|
264 |
-
par_bbox = [int(xmin/factor), int(ymin/factor), int(xmax/factor), int(ymax/factor)]
|
265 |
-
par_boxes.append(par_bbox)
|
266 |
-
lines_par_boxes.append(line_boxes_par)
|
267 |
-
par_idx += 1
|
268 |
-
|
269 |
-
return texts_lines, texts_pars, texts_lines_par, row_indexes, par_boxes, line_boxes, lines_par_boxes
|
270 |
-
|
271 |
-
# rescale image to get 300dpi
|
272 |
-
def set_image_dpi_resize(image):
|
273 |
-
"""
|
274 |
-
Rescaling image to 300dpi while resizing
|
275 |
-
:param image: An image
|
276 |
-
:return: A rescaled image
|
277 |
-
"""
|
278 |
-
length_x, width_y = image.size
|
279 |
-
factor = min(1, float(1024.0 / length_x))
|
280 |
-
size = int(factor * length_x), int(factor * width_y)
|
281 |
-
# image_resize = image.resize(size, Image.Resampling.LANCZOS)
|
282 |
-
image_resize = image.resize(size, Image.LANCZOS)
|
283 |
-
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='1.png')
|
284 |
-
temp_filename = temp_file.name
|
285 |
-
image_resize.save(temp_filename, dpi=(300, 300))
|
286 |
-
return factor, temp_filename
|
287 |
-
|
288 |
-
# it is important that each bounding box should be in (upper left, lower right) format.
|
289 |
-
# source: https://github.com/NielsRogge/Transformers-Tutorials/issues/129
|
290 |
-
def upperleft_to_lowerright(bbox):
|
291 |
-
x0, y0, x1, y1 = tuple(bbox)
|
292 |
-
if bbox[2] < bbox[0]:
|
293 |
-
x0 = bbox[2]
|
294 |
-
x1 = bbox[0]
|
295 |
-
if bbox[3] < bbox[1]:
|
296 |
-
y0 = bbox[3]
|
297 |
-
y1 = bbox[1]
|
298 |
-
return [x0, y0, x1, y1]
|
299 |
-
|
300 |
-
# convert boundings boxes (left, top, width, height) format to (left, top, left+widght, top+height) format.
|
301 |
-
def convert_box(bbox):
|
302 |
-
x, y, w, h = tuple(bbox) # the row comes in (left, top, width, height) format
|
303 |
-
return [x, y, x+w, y+h] # we turn it into (left, top, left+widght, top+height) to get the actual box
|
304 |
-
|
305 |
-
# LiLT model gets 1000x10000 pixels images
|
306 |
-
def normalize_box(bbox, width, height):
|
307 |
-
return [
|
308 |
-
int(1000 * (bbox[0] / width)),
|
309 |
-
int(1000 * (bbox[1] / height)),
|
310 |
-
int(1000 * (bbox[2] / width)),
|
311 |
-
int(1000 * (bbox[3] / height)),
|
312 |
-
]
|
313 |
-
|
314 |
-
# LiLT model gets 1000x10000 pixels images
|
315 |
-
def denormalize_box(bbox, width, height):
|
316 |
-
return [
|
317 |
-
int(width * (bbox[0] / 1000)),
|
318 |
-
int(height * (bbox[1] / 1000)),
|
319 |
-
int(width* (bbox[2] / 1000)),
|
320 |
-
int(height * (bbox[3] / 1000)),
|
321 |
-
]
|
322 |
-
|
323 |
-
# get back original size
|
324 |
-
def original_box(box, original_width, original_height, coco_width, coco_height):
|
325 |
-
return [
|
326 |
-
int(original_width * (box[0] / coco_width)),
|
327 |
-
int(original_height * (box[1] / coco_height)),
|
328 |
-
int(original_width * (box[2] / coco_width)),
|
329 |
-
int(original_height* (box[3] / coco_height)),
|
330 |
-
]
|
331 |
-
|
332 |
-
def get_blocks(bboxes_block, categories, texts):
|
333 |
-
|
334 |
-
# get list of unique block boxes
|
335 |
-
bbox_block_dict, bboxes_block_list, bbox_block_prec = dict(), list(), list()
|
336 |
-
for count_block, bbox_block in enumerate(bboxes_block):
|
337 |
-
if bbox_block != bbox_block_prec:
|
338 |
-
bbox_block_indexes = [i for i, bbox in enumerate(bboxes_block) if bbox == bbox_block]
|
339 |
-
bbox_block_dict[count_block] = bbox_block_indexes
|
340 |
-
bboxes_block_list.append(bbox_block)
|
341 |
-
bbox_block_prec = bbox_block
|
342 |
-
|
343 |
-
# get list of categories and texts by unique block boxes
|
344 |
-
category_block_list, text_block_list = list(), list()
|
345 |
-
for bbox_block in bboxes_block_list:
|
346 |
-
count_block = bboxes_block.index(bbox_block)
|
347 |
-
bbox_block_indexes = bbox_block_dict[count_block]
|
348 |
-
category_block = np.array(categories, dtype=object)[bbox_block_indexes].tolist()[0]
|
349 |
-
category_block_list.append(category_block)
|
350 |
-
text_block = np.array(texts, dtype=object)[bbox_block_indexes].tolist()
|
351 |
-
text_block = [text.replace("\n","").strip() for text in text_block]
|
352 |
-
if id2label[category_block] == "Text" or id2label[category_block] == "Caption" or id2label[category_block] == "Footnote":
|
353 |
-
text_block = ' '.join(text_block)
|
354 |
-
else:
|
355 |
-
text_block = '\n'.join(text_block)
|
356 |
-
text_block_list.append(text_block)
|
357 |
-
|
358 |
-
return bboxes_block_list, category_block_list, text_block_list
|
359 |
-
|
360 |
-
# function to sort bounding boxes
|
361 |
-
def get_sorted_boxes(bboxes):
|
362 |
-
|
363 |
-
# sort by y from page top to bottom
|
364 |
-
sorted_bboxes = sorted(bboxes, key=itemgetter(1), reverse=False)
|
365 |
-
y_list = [bbox[1] for bbox in sorted_bboxes]
|
366 |
-
|
367 |
-
# sort by x from page left to right when boxes with same y
|
368 |
-
if len(list(set(y_list))) != len(y_list):
|
369 |
-
y_list_duplicates_indexes = dict()
|
370 |
-
y_list_duplicates = [item for item, count in collections.Counter(y_list).items() if count > 1]
|
371 |
-
for item in y_list_duplicates:
|
372 |
-
y_list_duplicates_indexes[item] = [i for i, e in enumerate(y_list) if e == item]
|
373 |
-
bbox_list_y_duplicates = sorted(np.array(sorted_bboxes, dtype=object)[y_list_duplicates_indexes[item]].tolist(), key=itemgetter(0), reverse=False)
|
374 |
-
np_array_bboxes = np.array(sorted_bboxes)
|
375 |
-
np_array_bboxes[y_list_duplicates_indexes[item]] = np.array(bbox_list_y_duplicates)
|
376 |
-
sorted_bboxes = np_array_bboxes.tolist()
|
377 |
-
|
378 |
-
return sorted_bboxes
|
379 |
-
|
380 |
-
# sort data from y = 0 to end of page (and after, x=0 to end of page when necessary)
|
381 |
-
def sort_data(bboxes, categories, texts):
|
382 |
-
|
383 |
-
sorted_bboxes = get_sorted_boxes(bboxes)
|
384 |
-
sorted_bboxes_indexes = [bboxes.index(bbox) for bbox in sorted_bboxes]
|
385 |
-
sorted_categories = np.array(categories, dtype=object)[sorted_bboxes_indexes].tolist()
|
386 |
-
sorted_texts = np.array(texts, dtype=object)[sorted_bboxes_indexes].tolist()
|
387 |
-
|
388 |
-
return sorted_bboxes, sorted_categories, sorted_texts
|
389 |
-
|
390 |
-
# sort data from y = 0 to end of page (and after, x=0 to end of page when necessary)
|
391 |
-
def sort_data_wo_labels(bboxes, texts):
|
392 |
-
|
393 |
-
sorted_bboxes = get_sorted_boxes(bboxes)
|
394 |
-
sorted_bboxes_indexes = [bboxes.index(bbox) for bbox in sorted_bboxes]
|
395 |
-
sorted_texts = np.array(texts, dtype=object)[sorted_bboxes_indexes].tolist()
|
396 |
-
|
397 |
-
return sorted_bboxes, sorted_texts
|
398 |
-
|
399 |
-
## PDF processing
|
400 |
-
|
401 |
-
# get filename and images of PDF pages
|
402 |
-
def pdf_to_images(uploaded_pdf):
|
403 |
-
|
404 |
-
# Check if None object
|
405 |
-
if uploaded_pdf is None:
|
406 |
-
path_to_file = pdf_blank
|
407 |
-
filename = path_to_file.replace(examples_dir,"")
|
408 |
-
msg = "Invalid PDF file."
|
409 |
-
images = [Image.open(image_blank)]
|
410 |
-
else:
|
411 |
-
# path to the uploaded PDF
|
412 |
-
path_to_file = uploaded_pdf.name
|
413 |
-
filename = path_to_file.replace("/tmp/","")
|
414 |
-
|
415 |
-
try:
|
416 |
-
PdfReader(path_to_file)
|
417 |
-
except PdfReadError:
|
418 |
-
path_to_file = pdf_blank
|
419 |
-
filename = path_to_file.replace(examples_dir,"")
|
420 |
-
msg = "Invalid PDF file."
|
421 |
-
images = [Image.open(image_blank)]
|
422 |
-
else:
|
423 |
-
try:
|
424 |
-
images = convert_from_path(path_to_file, last_page=max_imgboxes)
|
425 |
-
num_imgs = len(images)
|
426 |
-
msg = f'The PDF "{filename}" was converted into {num_imgs} images.'
|
427 |
-
except:
|
428 |
-
msg = f'Error with the PDF "{filename}": it was not converted into images.'
|
429 |
-
images = [Image.open(image_wo_content)]
|
430 |
-
|
431 |
-
return filename, msg, images
|
432 |
-
|
433 |
-
# Extraction of image data (text and bounding boxes)
|
434 |
-
def extraction_data_from_image(images):
|
435 |
-
|
436 |
-
num_imgs = len(images)
|
437 |
-
|
438 |
-
if num_imgs > 0:
|
439 |
-
|
440 |
-
# https://pyimagesearch.com/2021/11/15/tesseract-page-segmentation-modes-psms-explained-how-to-improve-your-ocr-accuracy/
|
441 |
-
custom_config = r'--oem 3 --psm 3 -l eng' # default config PyTesseract: --oem 3 --psm 3 -l eng+deu+fra+jpn+por+spa+rus+hin+chi_sim
|
442 |
-
results, texts_lines, texts_pars, texts_lines_par, row_indexes, par_boxes, line_boxes, lines_par_boxes, images_pixels = dict(), dict(), dict(), dict(), dict(), dict(), dict(), dict(), dict()
|
443 |
-
images_ids_list, texts_lines_list, texts_pars_list, texts_lines_par_list, par_boxes_list, line_boxes_list, lines_par_boxes_list, images_list, images_pixels_list, page_no_list, num_pages_list = list(), list(), list(), list(), list(), list(), list(), list(), list(), list(), list()
|
444 |
-
|
445 |
-
try:
|
446 |
-
for i,image in enumerate(images):
|
447 |
-
# image preprocessing
|
448 |
-
# https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_thresholding/py_thresholding.html
|
449 |
-
img = image.copy()
|
450 |
-
factor, path_to_img = set_image_dpi_resize(img) # Rescaling to 300dpi
|
451 |
-
img = Image.open(path_to_img)
|
452 |
-
img = np.array(img, dtype='uint8') # convert PIL to cv2
|
453 |
-
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # gray scale image
|
454 |
-
ret,img = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
|
455 |
-
|
456 |
-
# OCR PyTesseract | get langs of page
|
457 |
-
txt = pytesseract.image_to_string(img, config=custom_config)
|
458 |
-
txt = txt.strip().lower()
|
459 |
-
txt = re.sub(r" +", " ", txt) # multiple space
|
460 |
-
txt = re.sub(r"(\n\s*)+\n+", "\n", txt) # multiple line
|
461 |
-
# txt = os.popen(f'tesseract {img_filepath} - {custom_config}').read()
|
462 |
-
try:
|
463 |
-
langs = detect_langs(txt)
|
464 |
-
langs = [langdetect2Tesseract[langs[i].lang] for i in range(len(langs))]
|
465 |
-
langs_string = '+'.join(langs)
|
466 |
-
except:
|
467 |
-
langs_string = "eng"
|
468 |
-
langs_string += '+osd'
|
469 |
-
custom_config = f'--oem 3 --psm 3 -l {langs_string}' # default config PyTesseract: --oem 3 --psm 3
|
470 |
-
|
471 |
-
# OCR PyTesseract | get data
|
472 |
-
results[i] = pytesseract.image_to_data(img, config=custom_config, output_type=pytesseract.Output.DICT)
|
473 |
-
# results[i] = os.popen(f'tesseract {img_filepath} - {custom_config}').read()
|
474 |
-
|
475 |
-
# get image pixels
|
476 |
-
images_pixels[i] = feature_extractor(images[i], return_tensors="pt").pixel_values
|
477 |
-
|
478 |
-
texts_lines[i], texts_pars[i], texts_lines_par[i], row_indexes[i], par_boxes[i], line_boxes[i], lines_par_boxes[i] = get_data_paragraph(results[i], factor, conf_min=0)
|
479 |
-
texts_lines_list.append(texts_lines[i])
|
480 |
-
texts_pars_list.append(texts_pars[i])
|
481 |
-
texts_lines_par_list.append(texts_lines_par[i])
|
482 |
-
par_boxes_list.append(par_boxes[i])
|
483 |
-
line_boxes_list.append(line_boxes[i])
|
484 |
-
lines_par_boxes_list.append(lines_par_boxes[i])
|
485 |
-
images_ids_list.append(i)
|
486 |
-
images_pixels_list.append(images_pixels[i])
|
487 |
-
images_list.append(images[i])
|
488 |
-
page_no_list.append(i)
|
489 |
-
num_pages_list.append(num_imgs)
|
490 |
-
|
491 |
-
except:
|
492 |
-
print(f"There was an error within the extraction of PDF text by the OCR!")
|
493 |
-
else:
|
494 |
-
from datasets import Dataset
|
495 |
-
dataset = Dataset.from_dict({"images_ids": images_ids_list, "images": images_list, "images_pixels": images_pixels_list, "page_no": page_no_list, "num_pages": num_pages_list, "texts_line": texts_lines_list, "texts_par": texts_pars_list, "texts_lines_par": texts_lines_par_list, "bboxes_par": par_boxes_list, "bboxes_lines_par":lines_par_boxes_list})
|
496 |
-
|
497 |
-
|
498 |
-
# print(f"The text data was successfully extracted by the OCR!")
|
499 |
-
|
500 |
-
return dataset, texts_lines, texts_pars, texts_lines_par, row_indexes, par_boxes, line_boxes, lines_par_boxes
|
501 |
-
|
502 |
-
## Inference
|
503 |
-
|
504 |
-
def prepare_inference_features_paragraph(example, cls_box = cls_box, sep_box = sep_box):
|
505 |
-
|
506 |
-
images_ids_list, chunks_ids_list, input_ids_list, attention_mask_list, bb_list, images_pixels_list = list(), list(), list(), list(), list(), list()
|
507 |
-
|
508 |
-
# get batch
|
509 |
-
# batch_page_hash = example["page_hash"]
|
510 |
-
batch_images_ids = example["images_ids"]
|
511 |
-
batch_images = example["images"]
|
512 |
-
batch_images_pixels = example["images_pixels"]
|
513 |
-
batch_bboxes_par = example["bboxes_par"]
|
514 |
-
batch_texts_par = example["texts_par"]
|
515 |
-
batch_images_size = [image.size for image in batch_images]
|
516 |
-
|
517 |
-
batch_width, batch_height = [image_size[0] for image_size in batch_images_size], [image_size[1] for image_size in batch_images_size]
|
518 |
-
|
519 |
-
# add a dimension if not a batch but only one image
|
520 |
-
if not isinstance(batch_images_ids, list):
|
521 |
-
batch_images_ids = [batch_images_ids]
|
522 |
-
batch_images = [batch_images]
|
523 |
-
batch_images_pixels = [batch_images_pixels]
|
524 |
-
batch_bboxes_par = [batch_bboxes_par]
|
525 |
-
batch_texts_par = [batch_texts_par]
|
526 |
-
batch_width, batch_height = [batch_width], [batch_height]
|
527 |
-
|
528 |
-
# process all images of the batch
|
529 |
-
for num_batch, (image_id, image_pixels, boxes, texts_par, width, height) in enumerate(zip(batch_images_ids, batch_images_pixels, batch_bboxes_par, batch_texts_par, batch_width, batch_height)):
|
530 |
-
tokens_list = []
|
531 |
-
bboxes_list = []
|
532 |
-
|
533 |
-
# add a dimension if only on image
|
534 |
-
if not isinstance(texts_par, list):
|
535 |
-
texts_par, boxes = [texts_par], [boxes]
|
536 |
-
|
537 |
-
# convert boxes to original
|
538 |
-
normalize_bboxes_par = [normalize_box(upperleft_to_lowerright(box), width, height) for box in boxes]
|
539 |
-
|
540 |
-
# sort boxes with texts
|
541 |
-
# we want sorted lists from top to bottom of the image
|
542 |
-
boxes, texts_par = sort_data_wo_labels(normalize_bboxes_par, texts_par)
|
543 |
-
|
544 |
-
count = 0
|
545 |
-
for box, text_par in zip(boxes, texts_par):
|
546 |
-
tokens_par = tokenizer.tokenize(text_par)
|
547 |
-
num_tokens_par = len(tokens_par) # get number of tokens
|
548 |
-
tokens_list.extend(tokens_par)
|
549 |
-
bboxes_list.extend([box] * num_tokens_par) # number of boxes must be the same as the number of tokens
|
550 |
-
|
551 |
-
# use of return_overflowing_tokens=True / stride=doc_stride
|
552 |
-
# to get parts of image with overlap
|
553 |
-
# source: https://huggingface.co/course/chapter6/3b?fw=tf#handling-long-contexts
|
554 |
-
encodings = tokenizer(" ".join(texts_par),
|
555 |
-
truncation=True,
|
556 |
-
padding="max_length",
|
557 |
-
max_length=max_length,
|
558 |
-
stride=doc_stride,
|
559 |
-
return_overflowing_tokens=True,
|
560 |
-
return_offsets_mapping=True
|
561 |
-
)
|
562 |
-
|
563 |
-
otsm = encodings.pop("overflow_to_sample_mapping")
|
564 |
-
offset_mapping = encodings.pop("offset_mapping")
|
565 |
-
|
566 |
-
# Let's label those examples and get their boxes
|
567 |
-
sequence_length_prev = 0
|
568 |
-
for i, offsets in enumerate(offset_mapping):
|
569 |
-
# truncate tokens, boxes and labels based on length of chunk - 2 (special tokens <s> and </s>)
|
570 |
-
sequence_length = len(encodings.input_ids[i]) - 2
|
571 |
-
if i == 0: start = 0
|
572 |
-
else: start += sequence_length_prev - doc_stride
|
573 |
-
end = start + sequence_length
|
574 |
-
sequence_length_prev = sequence_length
|
575 |
-
|
576 |
-
# get tokens, boxes and labels of this image chunk
|
577 |
-
bb = [cls_box] + bboxes_list[start:end] + [sep_box]
|
578 |
-
|
579 |
-
# as the last chunk can have a length < max_length
|
580 |
-
# we must to add [tokenizer.pad_token] (tokens), [sep_box] (boxes) and [-100] (labels)
|
581 |
-
if len(bb) < max_length:
|
582 |
-
bb = bb + [sep_box] * (max_length - len(bb))
|
583 |
-
|
584 |
-
# append results
|
585 |
-
input_ids_list.append(encodings["input_ids"][i])
|
586 |
-
attention_mask_list.append(encodings["attention_mask"][i])
|
587 |
-
bb_list.append(bb)
|
588 |
-
images_ids_list.append(image_id)
|
589 |
-
chunks_ids_list.append(i)
|
590 |
-
images_pixels_list.append(image_pixels)
|
591 |
-
|
592 |
-
return {
|
593 |
-
"images_ids": images_ids_list,
|
594 |
-
"chunk_ids": chunks_ids_list,
|
595 |
-
"input_ids": input_ids_list,
|
596 |
-
"attention_mask": attention_mask_list,
|
597 |
-
"normalized_bboxes": bb_list,
|
598 |
-
"images_pixels": images_pixels_list
|
599 |
-
}
|
600 |
-
|
601 |
-
from torch.utils.data import Dataset
|
602 |
-
|
603 |
-
class CustomDataset(Dataset):
|
604 |
-
def __init__(self, dataset, tokenizer):
|
605 |
-
self.dataset = dataset
|
606 |
-
self.tokenizer = tokenizer
|
607 |
-
|
608 |
-
def __len__(self):
|
609 |
-
return len(self.dataset)
|
610 |
-
|
611 |
-
def __getitem__(self, idx):
|
612 |
-
# get item
|
613 |
-
example = self.dataset[idx]
|
614 |
-
encoding = dict()
|
615 |
-
encoding["images_ids"] = example["images_ids"]
|
616 |
-
encoding["chunk_ids"] = example["chunk_ids"]
|
617 |
-
encoding["input_ids"] = example["input_ids"]
|
618 |
-
encoding["attention_mask"] = example["attention_mask"]
|
619 |
-
encoding["bbox"] = example["normalized_bboxes"]
|
620 |
-
encoding["images_pixels"] = example["images_pixels"]
|
621 |
-
|
622 |
-
return encoding
|
623 |
-
|
624 |
-
import torch.nn.functional as F
|
625 |
-
|
626 |
-
# get predictions at token level
|
627 |
-
def predictions_token_level(images, custom_encoded_dataset):
|
628 |
-
|
629 |
-
num_imgs = len(images)
|
630 |
-
if num_imgs > 0:
|
631 |
-
|
632 |
-
chunk_ids, input_ids, bboxes, pixels_values, outputs, token_predictions = dict(), dict(), dict(), dict(), dict(), dict()
|
633 |
-
images_ids_list = list()
|
634 |
-
|
635 |
-
for i,encoding in enumerate(custom_encoded_dataset):
|
636 |
-
|
637 |
-
# get custom encoded data
|
638 |
-
image_id = encoding['images_ids']
|
639 |
-
chunk_id = encoding['chunk_ids']
|
640 |
-
input_id = torch.tensor(encoding['input_ids'])[None]
|
641 |
-
attention_mask = torch.tensor(encoding['attention_mask'])[None]
|
642 |
-
bbox = torch.tensor(encoding['bbox'])[None]
|
643 |
-
pixel_values = torch.tensor(encoding["images_pixels"])
|
644 |
-
|
645 |
-
# save data in dictionnaries
|
646 |
-
if image_id not in images_ids_list: images_ids_list.append(image_id)
|
647 |
-
|
648 |
-
if image_id in chunk_ids: chunk_ids[image_id].append(chunk_id)
|
649 |
-
else: chunk_ids[image_id] = [chunk_id]
|
650 |
-
|
651 |
-
if image_id in input_ids: input_ids[image_id].append(input_id)
|
652 |
-
else: input_ids[image_id] = [input_id]
|
653 |
-
|
654 |
-
if image_id in bboxes: bboxes[image_id].append(bbox)
|
655 |
-
else: bboxes[image_id] = [bbox]
|
656 |
-
|
657 |
-
if image_id in pixels_values: pixels_values[image_id].append(pixel_values)
|
658 |
-
else: pixels_values[image_id] = [pixel_values]
|
659 |
-
|
660 |
-
# get prediction with forward pass
|
661 |
-
with torch.no_grad():
|
662 |
-
output = model(
|
663 |
-
input_ids=input_id.to(device),
|
664 |
-
attention_mask=attention_mask.to(device),
|
665 |
-
bbox=bbox.to(device),
|
666 |
-
image=pixel_values.to(device)
|
667 |
-
)
|
668 |
-
|
669 |
-
# save probabilities of predictions in dictionnary
|
670 |
-
if image_id in outputs: outputs[image_id].append(F.softmax(output.logits.squeeze(), dim=-1))
|
671 |
-
else: outputs[image_id] = [F.softmax(output.logits.squeeze(), dim=-1)]
|
672 |
-
|
673 |
-
return outputs, images_ids_list, chunk_ids, input_ids, bboxes
|
674 |
-
|
675 |
-
else:
|
676 |
-
print("An error occurred while getting predictions!")
|
677 |
-
|
678 |
-
from functools import reduce
|
679 |
-
|
680 |
-
# Get predictions (line level)
|
681 |
-
def predictions_paragraph_level(dataset, outputs, images_ids_list, chunk_ids, input_ids, bboxes):
|
682 |
-
|
683 |
-
ten_probs_dict, ten_input_ids_dict, ten_bboxes_dict = dict(), dict(), dict()
|
684 |
-
bboxes_list_dict, input_ids_dict_dict, probs_dict_dict, df = dict(), dict(), dict(), dict()
|
685 |
-
|
686 |
-
if len(images_ids_list) > 0:
|
687 |
-
|
688 |
-
for i, image_id in enumerate(images_ids_list):
|
689 |
-
|
690 |
-
# get image information
|
691 |
-
images_list = dataset.filter(lambda example: example["images_ids"] == image_id)["images"]
|
692 |
-
image = images_list[0]
|
693 |
-
width, height = image.size
|
694 |
-
|
695 |
-
# get data
|
696 |
-
chunk_ids_list = chunk_ids[image_id]
|
697 |
-
outputs_list = outputs[image_id]
|
698 |
-
input_ids_list = input_ids[image_id]
|
699 |
-
bboxes_list = bboxes[image_id]
|
700 |
-
|
701 |
-
# create zeros tensors
|
702 |
-
ten_probs = torch.zeros((outputs_list[0].shape[0] - 2)*len(outputs_list), outputs_list[0].shape[1])
|
703 |
-
ten_input_ids = torch.ones(size=(1, (outputs_list[0].shape[0] - 2)*len(outputs_list)), dtype =int)
|
704 |
-
ten_bboxes = torch.zeros(size=(1, (outputs_list[0].shape[0] - 2)*len(outputs_list), 4), dtype =int)
|
705 |
-
|
706 |
-
if len(outputs_list) > 1:
|
707 |
-
|
708 |
-
for num_output, (output, input_id, bbox) in enumerate(zip(outputs_list, input_ids_list, bboxes_list)):
|
709 |
-
start = num_output*(max_length - 2) - max(0,num_output)*doc_stride
|
710 |
-
end = start + (max_length - 2)
|
711 |
-
|
712 |
-
if num_output == 0:
|
713 |
-
ten_probs[start:end,:] += output[1:-1]
|
714 |
-
ten_input_ids[:,start:end] = input_id[:,1:-1]
|
715 |
-
ten_bboxes[:,start:end,:] = bbox[:,1:-1,:]
|
716 |
-
else:
|
717 |
-
ten_probs[start:start + doc_stride,:] += output[1:1 + doc_stride]
|
718 |
-
ten_probs[start:start + doc_stride,:] = ten_probs[start:start + doc_stride,:] * 0.5
|
719 |
-
ten_probs[start + doc_stride:end,:] += output[1 + doc_stride:-1]
|
720 |
-
|
721 |
-
ten_input_ids[:,start:start + doc_stride] = input_id[:,1:1 + doc_stride]
|
722 |
-
ten_input_ids[:,start + doc_stride:end] = input_id[:,1 + doc_stride:-1]
|
723 |
-
|
724 |
-
ten_bboxes[:,start:start + doc_stride,:] = bbox[:,1:1 + doc_stride,:]
|
725 |
-
ten_bboxes[:,start + doc_stride:end,:] = bbox[:,1 + doc_stride:-1,:]
|
726 |
-
|
727 |
-
else:
|
728 |
-
ten_probs += outputs_list[0][1:-1]
|
729 |
-
ten_input_ids = input_ids_list[0][:,1:-1]
|
730 |
-
ten_bboxes = bboxes_list[0][:,1:-1]
|
731 |
-
|
732 |
-
ten_probs_list, ten_input_ids_list, ten_bboxes_list = ten_probs.tolist(), ten_input_ids.tolist()[0], ten_bboxes.tolist()[0]
|
733 |
-
bboxes_list = list()
|
734 |
-
input_ids_dict, probs_dict = dict(), dict()
|
735 |
-
bbox_prev = [-100, -100, -100, -100]
|
736 |
-
for probs, input_id, bbox in zip(ten_probs_list, ten_input_ids_list, ten_bboxes_list):
|
737 |
-
bbox = denormalize_box(bbox, width, height)
|
738 |
-
if bbox != bbox_prev and bbox != cls_box and bbox != sep_box and bbox[0] != bbox[2] and bbox[1] != bbox[3]:
|
739 |
-
bboxes_list.append(bbox)
|
740 |
-
input_ids_dict[str(bbox)] = [input_id]
|
741 |
-
probs_dict[str(bbox)] = [probs]
|
742 |
-
elif bbox != cls_box and bbox != sep_box and bbox[0] != bbox[2] and bbox[1] != bbox[3]:
|
743 |
-
input_ids_dict[str(bbox)].append(input_id)
|
744 |
-
probs_dict[str(bbox)].append(probs)
|
745 |
-
bbox_prev = bbox
|
746 |
-
|
747 |
-
probs_bbox = dict()
|
748 |
-
for i,bbox in enumerate(bboxes_list):
|
749 |
-
probs = probs_dict[str(bbox)]
|
750 |
-
probs = np.array(probs).T.tolist()
|
751 |
-
|
752 |
-
probs_label = list()
|
753 |
-
for probs_list in probs:
|
754 |
-
prob_label = reduce(lambda x, y: x*y, probs_list)
|
755 |
-
prob_label = prob_label**(1./(len(probs_list))) # normalization
|
756 |
-
probs_label.append(prob_label)
|
757 |
-
max_value = max(probs_label)
|
758 |
-
max_index = probs_label.index(max_value)
|
759 |
-
probs_bbox[str(bbox)] = max_index
|
760 |
-
|
761 |
-
bboxes_list_dict[image_id] = bboxes_list
|
762 |
-
input_ids_dict_dict[image_id] = input_ids_dict
|
763 |
-
probs_dict_dict[image_id] = probs_bbox
|
764 |
-
|
765 |
-
df[image_id] = pd.DataFrame()
|
766 |
-
df[image_id]["bboxes"] = bboxes_list
|
767 |
-
df[image_id]["texts"] = [tokenizer.decode(input_ids_dict[str(bbox)]) for bbox in bboxes_list]
|
768 |
-
df[image_id]["labels"] = [id2label[probs_bbox[str(bbox)]] for bbox in bboxes_list]
|
769 |
-
|
770 |
-
return probs_bbox, bboxes_list_dict, input_ids_dict_dict, probs_dict_dict, df
|
771 |
-
|
772 |
-
else:
|
773 |
-
print("An error occurred while getting predictions!")
|
774 |
-
|
775 |
-
# Get labeled images with lines bounding boxes
|
776 |
-
def get_labeled_images(dataset, images_ids_list, bboxes_list_dict, probs_dict_dict):
|
777 |
-
|
778 |
-
labeled_images = list()
|
779 |
-
|
780 |
-
for i, image_id in enumerate(images_ids_list):
|
781 |
-
|
782 |
-
# get image
|
783 |
-
images_list = dataset.filter(lambda example: example["images_ids"] == image_id)["images"]
|
784 |
-
image = images_list[0]
|
785 |
-
width, height = image.size
|
786 |
-
|
787 |
-
# get predicted boxes and labels
|
788 |
-
bboxes_list = bboxes_list_dict[image_id]
|
789 |
-
probs_bbox = probs_dict_dict[image_id]
|
790 |
-
|
791 |
-
draw = ImageDraw.Draw(image)
|
792 |
-
# https://stackoverflow.com/questions/66274858/choosing-a-pil-imagefont-by-font-name-rather-than-filename-and-cross-platform-f
|
793 |
-
font = font_manager.FontProperties(family='sans-serif', weight='bold')
|
794 |
-
font_file = font_manager.findfont(font)
|
795 |
-
font_size = 30
|
796 |
-
font = ImageFont.truetype(font_file, font_size)
|
797 |
-
|
798 |
-
for bbox in bboxes_list:
|
799 |
-
predicted_label = id2label[probs_bbox[str(bbox)]]
|
800 |
-
draw.rectangle(bbox, outline=label2color[predicted_label])
|
801 |
-
draw.text((bbox[0] + 10, bbox[1] - font_size), text=predicted_label, fill=label2color[predicted_label], font=font)
|
802 |
-
|
803 |
-
labeled_images.append(image)
|
804 |
-
|
805 |
-
return labeled_images
|
806 |
-
|
807 |
-
# get data of encoded chunk
|
808 |
-
def get_encoded_chunk_inference(index_chunk=None):
|
809 |
-
|
810 |
-
# get datasets
|
811 |
-
example = dataset
|
812 |
-
encoded_example = encoded_dataset
|
813 |
-
|
814 |
-
# get randomly a document in dataset
|
815 |
-
if index_chunk == None: index_chunk = random.randint(0, len(encoded_example)-1)
|
816 |
-
encoded_example = encoded_example[index_chunk]
|
817 |
-
encoded_image_ids = encoded_example["images_ids"]
|
818 |
-
|
819 |
-
# get the image
|
820 |
-
example = example.filter(lambda example: example["images_ids"] == encoded_image_ids)[0]
|
821 |
-
image = example["images"] # original image
|
822 |
-
width, height = image.size
|
823 |
-
page_no = example["page_no"]
|
824 |
-
num_pages = example["num_pages"]
|
825 |
-
|
826 |
-
# get boxes, texts, categories
|
827 |
-
bboxes, input_ids = encoded_example["normalized_bboxes"][1:-1], encoded_example["input_ids"][1:-1]
|
828 |
-
bboxes = [denormalize_box(bbox, width, height) for bbox in bboxes]
|
829 |
-
num_tokens = len(input_ids) + 2
|
830 |
-
|
831 |
-
# get unique bboxes and corresponding labels
|
832 |
-
bboxes_list, input_ids_list = list(), list()
|
833 |
-
input_ids_dict = dict()
|
834 |
-
bbox_prev = [-100, -100, -100, -100]
|
835 |
-
for i, (bbox, input_id) in enumerate(zip(bboxes, input_ids)):
|
836 |
-
if bbox != bbox_prev:
|
837 |
-
bboxes_list.append(bbox)
|
838 |
-
input_ids_dict[str(bbox)] = [input_id]
|
839 |
-
else:
|
840 |
-
input_ids_dict[str(bbox)].append(input_id)
|
841 |
-
|
842 |
-
# start_indexes_list.append(i)
|
843 |
-
bbox_prev = bbox
|
844 |
-
|
845 |
-
# do not keep "</s><pad><pad>..."
|
846 |
-
if input_ids_dict[str(bboxes_list[-1])][0] == (tokenizer.convert_tokens_to_ids('</s>')):
|
847 |
-
del input_ids_dict[str(bboxes_list[-1])]
|
848 |
-
bboxes_list = bboxes_list[:-1]
|
849 |
-
|
850 |
-
# get texts by line
|
851 |
-
input_ids_list = input_ids_dict.values()
|
852 |
-
texts_list = [tokenizer.decode(input_ids) for input_ids in input_ids_list]
|
853 |
-
|
854 |
-
# display DataFrame
|
855 |
-
df = pd.DataFrame({"texts": texts_list, "input_ids": input_ids_list, "bboxes": bboxes_list})
|
856 |
-
|
857 |
-
return image, df, num_tokens, page_no, num_pages
|
858 |
-
|
859 |
-
# display chunk of PDF image and its data
|
860 |
-
def display_chunk_paragraphs_inference(index_chunk=None):
|
861 |
-
|
862 |
-
# get image and image data
|
863 |
-
image, df, num_tokens, page_no, num_pages = get_encoded_chunk_inference(index_chunk=index_chunk)
|
864 |
-
|
865 |
-
# get data from dataframe
|
866 |
-
input_ids = df["input_ids"]
|
867 |
-
texts = df["texts"]
|
868 |
-
bboxes = df["bboxes"]
|
869 |
-
|
870 |
-
print(f'Chunk ({num_tokens} tokens) of the PDF (page: {page_no+1} / {num_pages})\n')
|
871 |
-
|
872 |
-
# display image with bounding boxes
|
873 |
-
print(">> PDF image with bounding boxes of paragraphs\n")
|
874 |
-
draw = ImageDraw.Draw(image)
|
875 |
-
|
876 |
-
labels = list()
|
877 |
-
for box, text in zip(bboxes, texts):
|
878 |
-
color = "red"
|
879 |
-
draw.rectangle(box, outline=color)
|
880 |
-
|
881 |
-
# resize image to original
|
882 |
-
width, height = image.size
|
883 |
-
image = image.resize((int(0.5*width), int(0.5*height)))
|
884 |
-
|
885 |
-
# convert to cv and display
|
886 |
-
img = np.array(image, dtype='uint8') # PIL to cv2
|
887 |
-
cv2_imshow(img)
|
888 |
-
cv2.waitKey(0)
|
889 |
-
|
890 |
-
# display image dataframe
|
891 |
-
print("\n>> Dataframe of annotated paragraphs\n")
|
892 |
-
cols = ["texts", "bboxes"]
|
893 |
-
df = df[cols]
|
894 |
-
display(df)
|
|
|
25 |
from pypdf import PdfReader
|
26 |
from pypdf.errors import PdfReadError
|
27 |
|
28 |
+
import pypdfium2 as pdfium
|
|
|
29 |
import langdetect
|
30 |
from langdetect import detect_langs
|
31 |
|
|
|
169 |
label2id_layoutxlm = model_layoutxlm.config.label2id
|
170 |
num_labels_layoutxlm = len(id2label_layoutxlm)
|
171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|