Spaces:
Running
Running
File size: 13,803 Bytes
d9b3bd5 e72a494 d9b3bd5 2a7c083 d9b3bd5 2a7c083 d9b3bd5 2a7c083 609dcec d9b3bd5 609dcec d9b3bd5 2a7c083 d9b3bd5 2a7c083 d9b3bd5 c9ce250 d9b3bd5 609dcec d9b3bd5 609dcec d9b3bd5 609dcec d9b3bd5 609dcec d9b3bd5 609dcec d9b3bd5 e72a494 d9b3bd5 2a7c083 d9b3bd5 2a7c083 d9b3bd5 2a7c083 d9b3bd5 2a7c083 d9b3bd5 2a7c083 d9b3bd5 269f209 2a7c083 d9b3bd5 2a7c083 d9b3bd5 609dcec d9b3bd5 609dcec d9b3bd5 609dcec d9b3bd5 2a7c083 d9b3bd5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
import argparse
import gradio as gr
import os
from PIL import Image
import spaces
from kimi_vl.serve.frontend import reload_javascript
from kimi_vl.serve.utils import (
configure_logger,
pil_to_base64,
parse_and_draw_response,
strip_stop_words,
is_variable_assigned,
)
from kimi_vl.serve.gradio_utils import (
cancel_outputing,
delete_last_conversation,
reset_state,
reset_textbox,
transfer_input,
wrap_gen_fn,
)
from kimi_vl.serve.chat_utils import (
generate_prompt_with_history,
convert_conversation_to_prompts,
highlight_instruction,
to_gradio_chatbot,
to_gradio_history,
)
from kimi_vl.serve.inference import kimi_vl_generate, load_model
from kimi_vl.serve.examples import get_examples
TITLE = """<h1 align="left" style="min-width:200px; margin-top:0;">Chat with Kimi-VL-A3B-Instruct </h1>"""
DESCRIPTION_TOP = """<a href="https://github.com/MoonshotAI/Kimi-VL" target="_blank">Kimi-VL-A3B</a> is a multi-modal LLM that can understand text, single-image, multi-image, and video, and generate reply. For thinking version, please try [Kimi-VL-A3B-Thinking](https://huggingface.co/spaces/moonshotai/Kimi-VL-A3B-Thinking)."""
DESCRIPTION = """"""
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
DEPLOY_MODELS = dict()
logger = configure_logger()
def resize_image(image: Image.Image, max_size: int = 640, min_size: int = 28):
width, height = image.size
if width < min_size or height < min_size:
# Double both dimensions while maintaining aspect ratio
scale = min_size / min(width, height)
new_width = int(width * scale)
new_height = int(height * scale)
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
elif max_size > 0 and (width > max_size or height > max_size):
# Double both dimensions while maintaining aspect ratio
scale = max_size / max(width, height)
new_width = int(width * scale)
new_height = int(height * scale)
image = image.resize((new_width, new_height))
return image
def load_frames(video_file, max_num_frames=64, long_edge=448):
from decord import VideoReader
vr = VideoReader(video_file)
duration = len(vr)
fps = vr.get_avg_fps()
length = int(duration / fps)
num_frames = min(max_num_frames, length)
frame_timestamps = [int(duration / num_frames * (i+0.5)) / fps for i in range(num_frames)]
frame_indices = [int(duration / num_frames * (i+0.5)) for i in range(num_frames)]
frames_data = vr.get_batch(frame_indices).asnumpy()
imgs = []
for idx in range(num_frames):
img = resize_image(Image.fromarray(frames_data[idx]).convert("RGB"), long_edge)
imgs.append(img)
return imgs, frame_timestamps
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default="Kimi-VL-A3B-Instruct")
parser.add_argument(
"--local-path",
type=str,
default="",
help="huggingface ckpt, optional",
)
# lazy load
parser.add_argument("--lazy-load", action='store_true')
parser.add_argument("--ip", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int, default=7860)
return parser.parse_args()
def fetch_model(model_name: str):
global args, DEPLOY_MODELS
if args.local_path:
model_path = args.local_path
else:
model_path = f"moonshotai/{args.model}"
if model_name in DEPLOY_MODELS:
model_info = DEPLOY_MODELS[model_name]
print(f"{model_name} has been loaded.")
else:
print(f"{model_name} is loading...")
DEPLOY_MODELS[model_name] = load_model(model_path)
print(f"Load {model_name} successfully...")
model_info = DEPLOY_MODELS[model_name]
return model_info
def preview_images(files) -> list[str]:
if files is None:
return []
image_paths = []
for file in files:
image_paths.append(file.name)
return image_paths
def get_prompt(conversation) -> str:
"""
Get the prompt for the conversation.
"""
system_prompt = conversation.system_template.format(system_message=conversation.system_message)
return system_prompt
@wrap_gen_fn
@spaces.GPU(duration=180)
def predict(
text,
images,
chatbot,
history,
top_p,
temperature,
max_length_tokens,
max_context_length_tokens,
video_num_frames,
video_long_edge,
chunk_size: int = 512,
):
"""
Predict the response for the input text and images.
Args:
text (str): The input text.
images (list[PIL.Image.Image]): The input images.
chatbot (list): The chatbot.
history (list): The history.
top_p (float): The top-p value.
temperature (float): The temperature value.
repetition_penalty (float): The repetition penalty value.
max_length_tokens (int): The max length tokens.
max_context_length_tokens (int): The max context length tokens.
video_num_frames (int): The max number of frames for one video.
chunk_size (int): The chunk size.
"""
print("running the prediction function")
try:
model, processor = fetch_model(args.model)
if text == "":
yield chatbot, history, "Empty context."
return
except KeyError:
yield [[text, "No Model Found"]], [], "No Model Found"
return
if images is None:
images = []
# load images
pil_images = []
timestamps = None
for img_or_file in images:
try:
# load as pil image
if isinstance(images, Image.Image):
pil_images.append(img_or_file)
else:
image = Image.open(img_or_file.name).convert("RGB")
pil_images.append(image)
except:
try:
pil_images, timestamps = load_frames(img_or_file, video_num_frames, video_long_edge)
## Only allow one video as input
break
except Exception as e:
print(f"Error loading image or video: {e}")
# generate prompt
conversation = generate_prompt_with_history(
text,
pil_images,
timestamps,
history,
processor,
max_length=max_context_length_tokens,
)
all_conv, last_image = convert_conversation_to_prompts(conversation)
stop_words = conversation.stop_str
gradio_chatbot_output = to_gradio_chatbot(conversation)
full_response = ""
# with torch.no_grad():
for x in kimi_vl_generate(
conversations=all_conv,
model=model,
processor=processor,
stop_words=stop_words,
max_length=max_length_tokens,
temperature=temperature,
top_p=top_p,
):
full_response += x
response = strip_stop_words(full_response, stop_words)
conversation.update_last_message(response)
gradio_chatbot_output[-1][1] = highlight_instruction(response)
yield gradio_chatbot_output, to_gradio_history(conversation), "Generating..."
if last_image is not None:
vg_image = parse_and_draw_response(response, last_image)
if vg_image is not None:
vg_base64 = pil_to_base64(vg_image, "vg", max_size=800, min_size=400)
# the end of the last message will be ```python ```
gradio_chatbot_output[-1][1] += '\n\n' + vg_base64
yield gradio_chatbot_output, to_gradio_history(conversation), "Generating..."
logger.info("flushed result to gradio")
if is_variable_assigned("x"):
print(
f"temperature: {temperature}, "
f"top_p: {top_p}, "
f"max_length_tokens: {max_length_tokens}"
)
yield gradio_chatbot_output, to_gradio_history(conversation), "Generate: Success"
def retry(
text,
images,
chatbot,
history,
top_p,
temperature,
max_length_tokens,
max_context_length_tokens,
chunk_size: int = 512,
):
"""
Retry the response for the input text and images.
"""
if len(history) == 0:
yield (chatbot, history, "Empty context")
return
chatbot.pop()
history.pop()
text = history.pop()[-1]
if type(text) is tuple:
text, _ = text
yield from predict(
text,
images,
chatbot,
history,
top_p,
temperature,
max_length_tokens,
max_context_length_tokens,
chunk_size,
)
def build_demo(args: argparse.Namespace) -> gr.Blocks:
if args.lazy_load:
fetch_model(args.model)
with gr.Blocks(theme=gr.themes.Soft(), delete_cache=(1800, 1800)) as demo:
history = gr.State([])
input_text = gr.State()
input_images = gr.State()
with gr.Row():
gr.HTML(TITLE)
status_display = gr.Markdown("Success", elem_id="status_display")
gr.Markdown(DESCRIPTION_TOP)
with gr.Row(equal_height=True):
with gr.Column(scale=4):
with gr.Row():
chatbot = gr.Chatbot(
elem_id=f"{args.model}-chatbot",
show_share_button=True,
bubble_full_width=False,
height=600,
)
with gr.Row():
with gr.Column(scale=4):
text_box = gr.Textbox(show_label=False, placeholder="Enter text", container=False)
with gr.Column(min_width=70):
submit_btn = gr.Button("Send")
with gr.Column(min_width=70):
cancel_btn = gr.Button("Stop")
with gr.Row():
empty_btn = gr.Button("π§Ή New Conversation")
retry_btn = gr.Button("π Regenerate")
del_last_btn = gr.Button("ποΈ Remove Last Turn")
with gr.Column():
# add note no more than 2 images once
gr.Markdown("Note: you can upload no more than 10 images once")
upload_images = gr.Files(file_types=["image", "video"], show_label=True)
gallery = gr.Gallery(columns=[3], height="200px", show_label=True)
upload_images.change(preview_images, inputs=upload_images, outputs=gallery)
# Parameter Setting Tab for control the generation parameters
with gr.Tab(label="Parameter Setting"):
top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p")
temperature = gr.Slider(
minimum=0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature"
)
max_length_tokens = gr.Slider(
minimum=512, maximum=8192, value=4096, step=64, interactive=True, label="Max Generation Tokens"
)
max_context_length_tokens = gr.Slider(
minimum=512, maximum=16384, value=4096, step=64, interactive=True, label="Max Context Length Tokens"
)
video_num_frames = gr.Slider(
minimum=1, maximum=32, value=16, step=1, interactive=True, label="Max Number of Frames for Video"
)
video_long_edge = gr.Slider(
minimum=28, maximum=896, value=448, step=28, interactive=True, label="Long Edge of Video"
)
show_images = gr.HTML(visible=False)
gr.Examples(
examples=get_examples(ROOT_DIR),
inputs=[upload_images, show_images, text_box],
)
gr.Markdown()
input_widgets = [
input_text,
input_images,
chatbot,
history,
top_p,
temperature,
max_length_tokens,
max_context_length_tokens,
video_num_frames,
video_long_edge,
]
output_widgets = [chatbot, history, status_display]
transfer_input_args = dict(
fn=transfer_input,
inputs=[text_box, upload_images],
outputs=[input_text, input_images, text_box, upload_images, submit_btn],
show_progress=True,
)
predict_args = dict(fn=predict, inputs=input_widgets, outputs=output_widgets, show_progress=True)
retry_args = dict(fn=retry, inputs=input_widgets, outputs=output_widgets, show_progress=True)
reset_args = dict(fn=reset_textbox, inputs=[], outputs=[text_box, status_display])
predict_events = [
text_box.submit(**transfer_input_args).then(**predict_args),
submit_btn.click(**transfer_input_args).then(**predict_args),
]
empty_btn.click(reset_state, outputs=output_widgets, show_progress=True)
empty_btn.click(**reset_args)
retry_btn.click(**retry_args)
del_last_btn.click(delete_last_conversation, [chatbot, history], output_widgets, show_progress=True)
cancel_btn.click(cancel_outputing, [], [status_display], cancels=predict_events)
demo.title = f"{args.model} Chatbot"
return demo
def main(args: argparse.Namespace):
demo = build_demo(args)
reload_javascript()
# concurrency_count=CONCURRENT_COUNT, max_size=MAX_EVENTS
favicon_path = os.path.join("kimi_vl/serve/assets/favicon.ico")
demo.queue().launch(
favicon_path=favicon_path,
server_name=args.ip,
server_port=args.port,
)
if __name__ == "__main__":
args = parse_args()
main(args)
|