File size: 4,964 Bytes
d3830cc e24f20d 98186a7 d3830cc e542c59 98186a7 e542c59 aea35b3 e542c59 faf7c96 e542c59 98186a7 e542c59 18e6afb e542c59 a590e48 e542c59 3055a8f d3830cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
"""
python interactive.py
"""
import torch
from transformers import AutoTokenizer, BertForSequenceClassification, AutoModelForSequenceClassification, AutoConfig
from transformers import TextClassificationPipeline
import gradio as gr
# global var
MODEL_NAME = 'momo/KcBERT-base_Hate_speech_Privacy_Detection'
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSequenceClassification.from_pretrained(
MODEL_NAME,
num_labels= 15,
problem_type="multi_label_classification"
)
MODEL_BUF = {
"name": MODEL_NAME,
"tokenizer": tokenizer,
"model": model,
}
def change_model_name(name):
MODEL_BUF["name"] = name
MODEL_BUF["tokenizer"] = AutoTokenizer.from_pretrained(name)
MODEL_BUF["model"] = AutoModelForSequenceClassification.from_pretrained(name)
def predict(model_name, text):
if model_name != MODEL_BUF["name"]:
change_model_name(model_name)
tokenizer = MODEL_BUF["tokenizer"]
model = MODEL_BUF["model"]
unsmile_labels = ["์ฌ์ฑ/๊ฐ์กฑ","๋จ์ฑ","์ฑ์์์","์ธ์ข
/๊ตญ์ ","์ฐ๋ น","์ง์ญ","์ข
๊ต","๊ธฐํ ํ์ค","์
ํ/์์ค","clean", 'name', 'number', 'address', 'bank', 'person']
num_labels = len(unsmile_labels)
model.config.id2label = {i: label for i, label in zip(range(num_labels), unsmile_labels)}
model.config.label2id = {label: i for i, label in zip(range(num_labels), unsmile_labels)}
pipe = TextClassificationPipeline(
model = model,
tokenizer = tokenizer,
return_all_scores=True,
function_to_apply='sigmoid'
)
return pipe(text)[0]
if __name__ == '__main__':
text = '์ฟ๋ด๊ฑธ ํ๋ณฟ๊ธ ์ฟ๋๊ณญ ์์ ฉ๋๊ณ ์์์๋ฉ'
model_name_list = [
'momo/KcELECTRA-base_Hate_speech_Privacy_Detection',
"momo/KcBERT-base_Hate_speech_Privacy_Detection",
]
#Create a gradio app with a button that calls predict()
app = gr.Interface(
fn=predict,
inputs=[gr.inputs.Dropdown(model_name_list, label="Model Name"), 'text'], outputs='text',
examples = [[MODEL_BUF["name"], text], [MODEL_BUF["name"], "4=๐ฆ 4โ ๐ฆ"]],
title="ํ๊ตญ์ด ํ์คํํ, ๊ฐ์ธ์ ๋ณด ํ๋ณ๊ธฐ (Korean Hate Speech and Privacy Detection)",
description="Korean Hate Speech and Privacy Detection."
)
app.launch()
# # global var
# MODEL_NAME = 'jason9693/SoongsilBERT-base-beep'
# tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
# model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
# config = AutoConfig.from_pretrained(MODEL_NAME)
# MODEL_BUF = {
# "name": MODEL_NAME,
# "tokenizer": tokenizer,
# "model": model,
# "config": config
# }
# def change_model_name(name):
# MODEL_BUF["name"] = name
# MODEL_BUF["tokenizer"] = AutoTokenizer.from_pretrained(name)
# MODEL_BUF["model"] = AutoModelForSequenceClassification.from_pretrained(name)
# MODEL_BUF["config"] = AutoConfig.from_pretrained(name)
# def predict(model_name, text):
# if model_name != MODEL_BUF["name"]:
# change_model_name(model_name)
# tokenizer = MODEL_BUF["tokenizer"]
# model = MODEL_BUF["model"]
# config = MODEL_BUF["config"]
# tokenized_text = tokenizer([text], return_tensors='pt')
# input_tokens = tokenizer.convert_ids_to_tokens(tokenized_text.input_ids[0])
# try:
# input_tokens = util.bytetokens_to_unicdode(input_tokens) if config.model_type in ['roberta', 'gpt', 'gpt2'] else input_tokens
# except KeyError:
# input_tokens = input_tokens
# model.eval()
# output, attention = model(**tokenized_text, output_attentions=True, return_dict=False)
# output = F.softmax(output, dim=-1)
# result = {}
# for idx, label in enumerate(output[0].detach().numpy()):
# result[config.id2label[idx]] = float(label)
# fig = visualize_attention(input_tokens, attention[0][0].detach().numpy())
# return result, fig#.logits.detach()#.numpy()#, output.attentions.detach().numpy()
# if __name__ == '__main__':
# text = '์ฟ๋ด๊ฑธ ํ๋ณฟ๊ธ ์ฟ๋๊ณญ ์์ ฉ๋๊ณ ์์์๋ฉ'
# model_name_list = [
# 'jason9693/SoongsilBERT-base-beep',
# "beomi/beep-klue-roberta-base-hate",
# "beomi/beep-koelectra-base-v3-discriminator-hate",
# "beomi/beep-KcELECTRA-base-hate"
# ]
# #Create a gradio app with a button that calls predict()
# app = gr.Interface(
# fn=predict,
# inputs=[gr.inputs.Dropdown(model_name_list, label="Model Name"), 'text'], outputs=['label', 'plot'],
# examples = [[MODEL_BUF["name"], text], [MODEL_BUF["name"], "4=๐ฆ 4โ ๐ฆ"]],
# title="ํ๊ตญ์ด ํ์ค์ฑ ๋ฐํ ๋ถ๋ฅ๊ธฐ (Korean Hate Speech Classifier)",
# description="Korean Hate Speech Classifier with Several Pretrained LM\nCurrent Supported Model:\n1. SoongsilBERT\n2. KcBERT(+KLUE)\n3. KcELECTRA\n4.KoELECTRA."
# )
# app.launch(inline=False) |