File size: 4,964 Bytes
d3830cc
 
 
e24f20d
98186a7
d3830cc
 
 
e542c59
 
 
 
 
 
 
 
98186a7
e542c59
 
 
 
 
aea35b3
e542c59
 
 
 
faf7c96
e542c59
 
 
98186a7
e542c59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18e6afb
e542c59
 
 
 
 
 
 
 
 
 
 
 
a590e48
e542c59
 
 
 
 
3055a8f
d3830cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
"""
python interactive.py
"""
import torch
from transformers import AutoTokenizer, BertForSequenceClassification, AutoModelForSequenceClassification, AutoConfig
from transformers import TextClassificationPipeline
import gradio as gr

# global var
MODEL_NAME = 'momo/KcBERT-base_Hate_speech_Privacy_Detection'
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSequenceClassification.from_pretrained(
    MODEL_NAME,
    num_labels= 15,
    problem_type="multi_label_classification"
)

MODEL_BUF = {
    "name": MODEL_NAME,
    "tokenizer": tokenizer,
    "model": model,
}

def change_model_name(name):
    MODEL_BUF["name"] = name
    MODEL_BUF["tokenizer"] = AutoTokenizer.from_pretrained(name)
    MODEL_BUF["model"] = AutoModelForSequenceClassification.from_pretrained(name)

def predict(model_name, text):
    if model_name != MODEL_BUF["name"]:
        change_model_name(model_name)
    
    tokenizer = MODEL_BUF["tokenizer"]
    model = MODEL_BUF["model"]

    unsmile_labels = ["์—ฌ์„ฑ/๊ฐ€์กฑ","๋‚จ์„ฑ","์„ฑ์†Œ์ˆ˜์ž","์ธ์ข…/๊ตญ์ ","์—ฐ๋ น","์ง€์—ญ","์ข…๊ต","๊ธฐํƒ€ ํ˜์˜ค","์•…ํ”Œ/์š•์„ค","clean", 'name', 'number', 'address', 'bank', 'person']
    num_labels = len(unsmile_labels)

    model.config.id2label = {i: label for i, label in zip(range(num_labels), unsmile_labels)}
    model.config.label2id = {label: i for i, label in zip(range(num_labels), unsmile_labels)}

    pipe = TextClassificationPipeline(
    model = model,
    tokenizer = tokenizer,
    return_all_scores=True,
    function_to_apply='sigmoid'
    )

    return pipe(text)[0]

if __name__ == '__main__':
    text = '์ฟ๋”ด๊ฑธ ํ™๋ณฟ๊ธ€ ์ฟ๋ž‰๊ณญ ์Œ‘์ ฉ๋‚„๊ณ  ์•‰์•Ÿ์žˆ๋ƒฉ'

    model_name_list = [
        'momo/KcELECTRA-base_Hate_speech_Privacy_Detection',
        "momo/KcBERT-base_Hate_speech_Privacy_Detection",
    ]

    #Create a gradio app with a button that calls predict()
    app = gr.Interface(
        fn=predict,
        inputs=[gr.inputs.Dropdown(model_name_list, label="Model Name"), 'text'], outputs='text', 
        examples = [[MODEL_BUF["name"], text], [MODEL_BUF["name"], "4=๐Ÿฆ€ 4โ‰ ๐Ÿฆ€"]],
        title="ํ•œ๊ตญ์–ด ํ˜์˜คํ‘œํ˜„, ๊ฐœ์ธ์ •๋ณด ํŒ๋ณ„๊ธฐ (Korean Hate Speech and Privacy Detection)",
        description="Korean Hate Speech and Privacy Detection."
        )
    app.launch()
    

# # global var
# MODEL_NAME = 'jason9693/SoongsilBERT-base-beep'
# tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
# model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
# config = AutoConfig.from_pretrained(MODEL_NAME)

# MODEL_BUF = {
#     "name": MODEL_NAME,
#     "tokenizer": tokenizer,
#     "model": model,
#     "config": config
# }

# def change_model_name(name):
#     MODEL_BUF["name"] = name
#     MODEL_BUF["tokenizer"] = AutoTokenizer.from_pretrained(name)
#     MODEL_BUF["model"] = AutoModelForSequenceClassification.from_pretrained(name)
#     MODEL_BUF["config"] = AutoConfig.from_pretrained(name)


# def predict(model_name, text):
#     if model_name != MODEL_BUF["name"]:
#         change_model_name(model_name)
    
#     tokenizer = MODEL_BUF["tokenizer"]
#     model = MODEL_BUF["model"]
#     config = MODEL_BUF["config"]

#     tokenized_text = tokenizer([text], return_tensors='pt')

#     input_tokens = tokenizer.convert_ids_to_tokens(tokenized_text.input_ids[0])
#     try:
#         input_tokens = util.bytetokens_to_unicdode(input_tokens) if config.model_type in ['roberta', 'gpt', 'gpt2'] else input_tokens
#     except KeyError:
#         input_tokens = input_tokens

#     model.eval()
#     output, attention = model(**tokenized_text, output_attentions=True, return_dict=False)
#     output = F.softmax(output, dim=-1)
#     result = {}
    
#     for idx, label in enumerate(output[0].detach().numpy()):
#         result[config.id2label[idx]] = float(label)

#     fig = visualize_attention(input_tokens, attention[0][0].detach().numpy())
#     return result, fig#.logits.detach()#.numpy()#, output.attentions.detach().numpy()


# if __name__ == '__main__':
#     text = '์ฟ๋”ด๊ฑธ ํ™๋ณฟ๊ธ€ ์ฟ๋ž‰๊ณญ ์Œ‘์ ฉ๋‚„๊ณ  ์•‰์•Ÿ์žˆ๋ƒฉ'

#     model_name_list = [
#         'jason9693/SoongsilBERT-base-beep',
#         "beomi/beep-klue-roberta-base-hate",
#         "beomi/beep-koelectra-base-v3-discriminator-hate",
#         "beomi/beep-KcELECTRA-base-hate"
#     ]

#     #Create a gradio app with a button that calls predict()
#     app = gr.Interface(
#         fn=predict,
#         inputs=[gr.inputs.Dropdown(model_name_list, label="Model Name"), 'text'], outputs=['label', 'plot'], 
#         examples = [[MODEL_BUF["name"], text], [MODEL_BUF["name"], "4=๐Ÿฆ€ 4โ‰ ๐Ÿฆ€"]],
#         title="ํ•œ๊ตญ์–ด ํ˜์˜ค์„ฑ ๋ฐœํ™” ๋ถ„๋ฅ˜๊ธฐ (Korean Hate Speech Classifier)",
#         description="Korean Hate Speech Classifier with Several Pretrained LM\nCurrent Supported Model:\n1. SoongsilBERT\n2. KcBERT(+KLUE)\n3. KcELECTRA\n4.KoELECTRA."
#         )
#     app.launch(inline=False)