EduLearnAI / check.py
mominah's picture
Update check.py
aab9adc verified
raw
history blame
8.84 kB
import os
import tempfile
import json
import numpy as np
import cv2
from PIL import Image
from pdf2image import convert_from_bytes
from fastapi import FastAPI, UploadFile, File, HTTPException
from fastapi.responses import JSONResponse, StreamingResponse
import uvicorn
from fastapi import APIRouter, HTTPException, Path
# Get API key from environment
GENAI_API_KEY = os.getenv("GENAI_API_KEY")
if not GENAI_API_KEY:
raise Exception("GENAI_API_KEY not set in environment")
# Import the Google GenAI client libraries.
from google import genai
from google.genai import types
# Initialize the GenAI client with the API key.
client = genai.Client(api_key=GENAI_API_KEY)
router = APIRouter(prefix="/check", tags=["check"])
# Use system temporary directory to store the results file.
TEMP_FOLDER = tempfile.gettempdir()
RESULT_FILE = os.path.join(TEMP_FOLDER, "result_cards.json")
##############################################################
# Preprocessing & Extraction Functions
##############################################################
def extract_json_from_output(output_str: str):
"""
Extracts a JSON object from a string containing extra text.
"""
start = output_str.find('{')
end = output_str.rfind('}')
if start == -1 or end == -1:
print("No JSON block found in the output.")
return None
json_str = output_str[start:end+1]
try:
return json.loads(json_str)
except json.JSONDecodeError as e:
print("Error decoding JSON:", e)
return None
def parse_all_answers(image_input: Image.Image) -> str:
"""
Extracts answers from an image of a 15-question answer sheet.
Returns the raw JSON string response from the model.
"""
output_format = """
Answer in the following JSON format. Do not write anything else:
{
"Answers": {
"1": "<option or text>",
"2": "<option or text>",
"3": "<option or text>",
"4": "<option or text>",
"5": "<option or text>",
"6": "<option or text>",
"7": "<option or text>",
"8": "<option or text>",
"9": "<option or text>",
"10": "<option or text>",
"11": "<free-text answer>",
"12": "<free-text answer>",
"13": "<free-text answer>",
"14": "<free-text answer>",
"15": "<free-text answer>"
}
}
"""
prompt = f"""
You are an assistant that extracts answers from an image.
The image is a screenshot of an answer sheet containing 15 questions.
For questions 1 to 10, the answers are multiple-choice selections.
For questions 11 to 15, the answers are free-text responses.
Extract the answer for each question (1 to 15) and provide the result in JSON using the format below:
{output_format}
"""
response = client.models.generate_content(
model="gemini-2.0-flash",
contents=[prompt, image_input]
)
return response.text
def parse_info(image_input: Image.Image) -> str:
"""
Extracts candidate information including name, number, country, level and paper from an image.
Returns the raw JSON string response from the model.
"""
output_format = """
Answer in the following JSON format. Do not write anything else:
{
"Candidate Info": {
"Name": "<name>",
"Number": "<number>",
"Country": "<country>",
"Level": "<level>",
"Paper": "<paper>"
}
}
"""
prompt = f"""
You are an assistant that extracts candidate information from an image.
The image contains candidate details including name, candidate number, country, level and paper.
Extract the information accurately and provide the result in JSON using the following format:
{output_format}
"""
response = client.models.generate_content(
model="gemini-2.0-flash",
contents=[prompt, image_input]
)
return response.text
def calculate_result(student_answers: dict, correct_answers: dict) -> dict:
"""
Compares student's answers with the correct answers and calculates the score.
Assumes JSON structures with a top-level "Answers" key containing Q1 to Q15.
"""
student_all = student_answers.get("Answers", {})
correct_all = correct_answers.get("Answers", {})
total_questions = 15
marks = 0
detailed = {}
for q in map(str, range(1, total_questions + 1)):
stud_ans = student_all.get(q, "").strip()
corr_ans = correct_all.get(q, "").strip()
if stud_ans == corr_ans:
marks += 1
detailed[q] = {"Student": stud_ans, "Correct": corr_ans, "Result": "Correct"}
else:
detailed[q] = {"Student": stud_ans, "Correct": corr_ans, "Result": "Incorrect"}
percentage = (marks / total_questions) * 100
return {
"Total Marks": marks,
"Total Questions": total_questions,
"Percentage": percentage,
"Detailed Results": detailed
}
def load_answer_key(pdf_bytes: bytes) -> dict:
"""
Converts a PDF (as bytes) to images, takes the last page, and parses the answers.
Returns the parsed JSON answer key.
"""
images = convert_from_bytes(pdf_bytes)
last_page_image = images[-1]
answer_key_response = parse_all_answers(last_page_image)
return extract_json_from_output(answer_key_response)
##############################################################
# FastAPI Endpoints
##############################################################
@router.post("/process")
async def process_pdfs(
original_pdf: UploadFile = File(..., description="PDF with all student answer sheets (one page per student)"),
paper_k_pdf: UploadFile = File(..., description="Answer key PDF for Paper K")
):
try:
# Read file bytes
student_pdf_bytes = await original_pdf.read()
paper_k_bytes = await paper_k_pdf.read()
# Load the Paper K answer key
answer_key_k = load_answer_key(paper_k_bytes)
if answer_key_k is None:
raise Exception("Failed to parse Paper K answer key.")
# Convert the student answer PDF to images (each page = one student)
student_images = convert_from_bytes(student_pdf_bytes)
all_results = []
for idx, page in enumerate(student_images):
# --- Extract Candidate Info Region ---
page_cv = cv2.cvtColor(np.array(page), cv2.COLOR_RGB2BGR)
h, w = page_cv.shape[:2]
mask = np.zeros((h, w), dtype="uint8")
top, bottom = int(h * 0.10), int(h * 0.75)
cv2.rectangle(mask, (0, top), (w, h - bottom), 255, -1)
cropped = cv2.bitwise_and(page_cv, page_cv, mask=mask)
coords = cv2.findNonZero(mask)
if coords is None:
continue
x, y, mw, mh = cv2.boundingRect(coords)
cand_img = Image.fromarray(cv2.cvtColor(cropped[y:y+mh, x:x+mw], cv2.COLOR_BGR2RGB))
# Extract candidate info
info_resp = parse_info(cand_img)
cand_info = extract_json_from_output(info_resp) or {}
# Extract student answers
stud_resp = parse_all_answers(page)
stud_answers = extract_json_from_output(stud_resp) or {}
# Calculate result against Paper K key
result = calculate_result(stud_answers, answer_key_k)
all_results.append({
"Student Index": idx + 1,
"Candidate Info": cand_info.get("Candidate Info", {}),
"Student Answers": stud_answers,
"Correct Answer Key": answer_key_k,
"Result": result
})
# Write out JSON file
with open(RESULT_FILE, "w", encoding="utf-8") as f:
json.dump({"results": all_results}, f, indent=2)
return JSONResponse(content={"results": all_results})
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@router.get("/download")
async def download_results():
"""
Returns the result JSON file stored in the temporary folder.
"""
if not os.path.exists(RESULT_FILE):
raise HTTPException(status_code=404, detail="Result file not found. Please run /process first.")
return StreamingResponse(
open(RESULT_FILE, "rb"),
media_type="application/json",
headers={"Content-Disposition": "attachment; filename=result_cards.json"}
)
@router.get("/")
async def root():
return {
"message": "Welcome to the Student Result Card API (Paper K only).",
"usage": (
"POST two PDFs to /process: "
"(1) original answer sheet PDF, "
"(2) Paper K answer-key PDF. "
"Then GET /download to retrieve the graded results."
)
}
if __name__ == "__main__":
uvicorn.run("main:app", host="0.0.0.0", port=8000, reload=True)