import os import tempfile import zipfile from typing import List, Optional, Any import uuid from datetime import datetime from fastapi import FastAPI, File, UploadFile, HTTPException, Query, Depends from fastapi.responses import FileResponse, StreamingResponse # Removed static files mounting for avatars as avatars are now served via GridFS in auth #from fastapi.staticfiles import StaticFiles from llm_initialization import get_llm from embedding import get_embeddings from document_loaders import DocumentLoader from text_splitter import TextSplitter from vector_store import VectorStoreManager from prompt_templates import PromptTemplates from chat_management import ChatManagement from retrieval_chain import RetrievalChain from urllib.parse import quote_plus from dotenv import load_dotenv from pymongo import MongoClient # Load environment variables load_dotenv() MONGO_PASSWORD = quote_plus(os.getenv("MONGO_PASSWORD")) MONGO_DATABASE_NAME = os.getenv("DATABASE_NAME") MONGO_COLLECTION_NAME = os.getenv("COLLECTION_NAME") MONGO_CLUSTER_URL = os.getenv("CONNECTION_STRING") app = FastAPI(title="VectorStore & Document Management API") # Note: Since user avatars are now stored in MongoDB via GridFS and served via /auth/avatar, # we no longer mount a local avatars directory. # Import auth router and dependencies from auth import router as auth_router, get_current_user, users_collection # Mount auth endpoints under /auth app.include_router(auth_router, prefix="/auth") from transcribe import router as transcribe_router app.include_router(transcribe_router, prefix="/audio") # Global variables (initialized on startup) llm = None embeddings = None chat_manager = None document_loader = None text_splitter = None vector_store_manager = None vector_store = None k = 3 # Number of documents to retrieve per query # ----------------------- Startup Event ----------------------- @app.on_event("startup") async def startup_event(): global llm, embeddings, chat_manager, document_loader, text_splitter, vector_store_manager, vector_store print("Starting up: Initializing components...") # Initialize LLM and embeddings llm = get_llm() print("LLM initialized.") embeddings = get_embeddings() print("Embeddings initialized.") # Setup chat management chat_manager = ChatManagement( cluster_url=MONGO_CLUSTER_URL, database_name=MONGO_DATABASE_NAME, collection_name=MONGO_COLLECTION_NAME, ) print("Chat management initialized.") # Initialize document loader and text splitter document_loader = DocumentLoader() text_splitter = TextSplitter() print("Document loader and text splitter initialized.") # Initialize vector store manager and set vector store vector_store_manager = VectorStoreManager(embeddings) vector_store = vector_store_manager.vectorstore print("Vector store initialized.") # ----------------------- New Chat Endpoint (Updated) ----------------------- @app.post("/new_chat") def new_chat(current_user: dict = Depends(get_current_user)): """ Create a new chat session under the current user's document. """ new_chat_id = str(uuid.uuid4()) # Append a new chat session to the user's chat_histories users_collection.update_one( {"email": current_user["email"]}, {"$push": {"chat_histories": {"chat_id": new_chat_id, "created_at": datetime.utcnow(), "messages": []}}} ) return {"chat_id": new_chat_id} # ----------------------- Create Chain Endpoint (Updated) ----------------------- @app.post("/create_chain") def create_chain( chat_id: str = Query(..., description="Existing chat session ID"), template: str = Query( "quiz_solving", description="Select prompt template. Options: quiz_solving, assignment_solving, paper_solving, quiz_creation, assignment_creation, paper_creation", ), current_user: dict = Depends(get_current_user) ): valid_templates = [ "quiz_solving", "assignment_solving", "paper_solving", "quiz_creation", "assignment_creation", "paper_creation", ] if template not in valid_templates: raise HTTPException(status_code=400, detail="Invalid template selection.") # Update the specific chat session's configuration in the user's document users_collection.update_one( {"email": current_user["email"], "chat_histories.chat_id": chat_id}, {"$set": {"chat_histories.$.template": template}} ) return {"message": "Retrieval chain configuration stored successfully.", "chat_id": chat_id, "template": template} # ----------------------- Chat Endpoint ----------------------- @app.get("/chat") def chat( query: str, chat_id: str = Query(..., description="Chat session ID"), current_user: dict = Depends(get_current_user) ): """ Process a chat query using the retrieval chain associated with the given chat_id. """ # Retrieve chat configuration from the user's document user = current_user chat_config = None for chat in user.get("chat_histories", []): if chat.get("chat_id") == chat_id: chat_config = chat break if not chat_config: raise HTTPException(status_code=400, detail="Chat configuration not found. Please create a chain using /create_chain.") template = chat_config.get("template", "quiz_solving") if template == "quiz_solving": prompt = PromptTemplates.get_quiz_solving_prompt() elif template == "assignment_solving": prompt = PromptTemplates.get_assignment_solving_prompt() elif template == "paper_solving": prompt = PromptTemplates.get_paper_solving_prompt() elif template == "quiz_creation": prompt = PromptTemplates.get_quiz_creation_prompt() elif template == "assignment_creation": prompt = PromptTemplates.get_assignment_creation_prompt() elif template == "paper_creation": prompt = PromptTemplates.get_paper_creation_prompt() else: raise HTTPException(status_code=400, detail="Invalid chat configuration.") retrieval_chain = RetrievalChain( llm, vector_store.as_retriever(search_kwargs={"k": k}), prompt, verbose=True, ) try: stream_generator = retrieval_chain.stream_chat_response( query=query, chat_id=chat_id, get_chat_history=chat_manager.get_chat_history, initialize_chat_history=chat_manager.initialize_chat_history, ) except Exception as e: raise HTTPException(status_code=500, detail=f"Error processing chat query: {str(e)}") return StreamingResponse(stream_generator, media_type="text/event-stream") # ----------------------- Remaining Endpoints ----------------------- @app.post("/add_document") async def add_document( file: Optional[UploadFile] = File(None), # File parameter now is an UploadFile wiki_query: Optional[str] = Query(None), wiki_url: Optional[str] = Query(None) ): if file is None and wiki_query is None and wiki_url is None: raise HTTPException(status_code=400, detail="No document input provided (file, wiki_query, or wiki_url).") if file is not None: with tempfile.NamedTemporaryFile(delete=False) as tmp: contents = await file.read() tmp.write(contents) tmp_filename = tmp.name ext = file.filename.split(".")[-1].lower() try: if ext == "pdf": documents = document_loader.load_pdf(tmp_filename) elif ext == "csv": documents = document_loader.load_csv(tmp_filename) elif ext in ["doc", "docx"]: documents = document_loader.load_doc(tmp_filename) elif ext in ["html", "htm"]: documents = document_loader.load_text_from_html(tmp_filename) elif ext in ["md", "markdown"]: documents = document_loader.load_markdown(tmp_filename) else: documents = document_loader.load_unstructured(tmp_filename) except Exception as e: os.remove(tmp_filename) raise HTTPException(status_code=400, detail=f"Error loading document from file: {str(e)}") os.remove(tmp_filename) elif wiki_query is not None: try: documents = document_loader.wikipedia_query(wiki_query) except Exception as e: raise HTTPException(status_code=400, detail=f"Error loading Wikipedia query: {str(e)}") elif wiki_url is not None: try: documents = document_loader.load_urls([wiki_url]) except Exception as e: raise HTTPException(status_code=400, detail=f"Error loading URL: {str(e)}") try: chunks = text_splitter.split_documents(documents) except Exception as e: raise HTTPException(status_code=500, detail=f"Error splitting document: {str(e)}") try: ids = vector_store_manager.add_documents(chunks) except Exception as e: raise HTTPException(status_code=500, detail=f"Error indexing document chunks: {str(e)}") return {"message": f"Added {len(chunks)} document chunks.", "ids": ids} @app.post("/delete_document") def delete_document(ids: List[str]): try: success = vector_store_manager.delete_documents(ids) except Exception as e: raise HTTPException(status_code=500, detail=f"Error deleting documents: {str(e)}") if not success: raise HTTPException(status_code=400, detail="Failed to delete documents.") return {"message": f"Deleted documents with IDs: {ids}"} @app.get("/save_vectorstore") def save_vectorstore(): try: save_result = vector_store_manager.save("faiss_index") except Exception as e: raise HTTPException(status_code=500, detail=f"Error saving vectorstore: {str(e)}") return FileResponse( path=save_result["file_path"], media_type=save_result["media_type"], filename=save_result["serve_filename"], ) @app.post("/load_vectorstore") async def load_vectorstore(file: UploadFile = File(...)): tmp_filename = None try: with tempfile.NamedTemporaryFile(delete=False) as tmp: file_bytes = await file.read() tmp.write(file_bytes) tmp_filename = tmp.name instance, message = VectorStoreManager.load(tmp_filename, embeddings) except Exception as e: raise HTTPException(status_code=500, detail=f"Error loading vectorstore: {str(e)}") finally: if tmp_filename and os.path.exists(tmp_filename): os.remove(tmp_filename) global vector_store_manager vector_store_manager = instance return {"message": message} @app.post("/merge_vectorstore") async def merge_vectorstore(file: UploadFile = File(...)): tmp_filename = None try: with tempfile.NamedTemporaryFile(delete=False) as tmp: file_bytes = await file.read() tmp.write(file_bytes) tmp_filename = tmp.name result = vector_store_manager.merge(tmp_filename, embeddings) except Exception as e: raise HTTPException(status_code=500, detail=f"Error merging vectorstore: {str(e)}") finally: if tmp_filename and os.path.exists(tmp_filename): os.remove(tmp_filename) return result @app.get("/") async def root(): """ Root endpoint that provides a welcome message. """ return { "message": "Welcome to the EduLearn AI." } if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8000)