import gradio as gr from langchain_core.prompts import ChatPromptTemplate #from langchain_openai import ChatOpenAI from langchain_google_genai import ChatGoogleGenerativeAI from langgraph.graph import StateGraph, END from typing import Dict, List # Assume you have your LangGraph setup here def agent_node(state): prompt = ChatPromptTemplate.from_messages( [("user", "{user_input}")] ) #model = ChatOpenAI() model = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0, max_tokens=None, timeout=None, max_retries=2, # other params... ) response = model.invoke(prompt.format_messages(**state)) return {"response": response.content} def create_workflow(): workflow = StateGraph(Dict) workflow.add_node("agent", agent_node) workflow.set_entry_point("agent") workflow.add_edge("agent", END) return workflow.compile() workflow = create_workflow() def respond(message, history): result = workflow.invoke({"user_input": message}) return result["response"] iface = gr.ChatInterface(respond) iface.launch() gr.close_all()