mohli commited on
Commit
d17844e
·
verified ·
1 Parent(s): a34aae9

Upload 19 files

Browse files
KNN/your code here ADDED
File without changes
NeuralNetwork/NeuralNetwork.py ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import warnings
3
+ import pandas as pd
4
+ import numpy as np
5
+ from scipy.stats import pearsonr
6
+ from sklearn.preprocessing import MinMaxScaler
7
+ from sklearn.model_selection import train_test_split
8
+ from sklearn.neural_network import MLPRegressor
9
+ from sklearn.metrics import mean_squared_error
10
+ from sklearn.exceptions import ConvergenceWarning
11
+ from matplotlib import pyplot as plt
12
+
13
+
14
+
15
+ class My_NeuralNetwork:
16
+ def __init__(self):
17
+ self.MAX_LAYERS = 10
18
+ self.target_column = "Water_Intake (liters)"
19
+ self.model = None
20
+
21
+ # default parameters
22
+ self.num_layer = 3
23
+ self.dimension = (32, 32, 32)
24
+ self.correlation_treshold = 0.01
25
+ self.epochs = 300
26
+
27
+ # Load the dataset and preprocess it
28
+ csv_file = os.path.join("app", "data", "gym_members_exercise_tracking.csv")
29
+ df = pd.read_csv(csv_file, engine="python")
30
+
31
+ df = df.dropna() # Remove rows with any null cell (just in case)
32
+ # Assigning some of the features as Category.
33
+ df["Gender"] = df["Gender"].astype("category")
34
+ df["Workout_Type"] = df["Workout_Type"].astype("category")
35
+
36
+ # getting the names of the numerical and categorical columns for later
37
+ numeric_columns = list(df.select_dtypes(exclude=["category"]).columns)
38
+ categorical_columns = list(df.select_dtypes(include=["category"]).columns)
39
+
40
+ self.df_original = (
41
+ df.copy()
42
+ ) # the df variable will have some features removes later but not this one
43
+
44
+ # remove the target to the list of features
45
+ numeric_columns.remove(self.target_column)
46
+
47
+ self.scaler = MinMaxScaler() # create a new MinMaxScaler
48
+ df_scaled = self.scaler.fit_transform(
49
+ df[numeric_columns]
50
+ ) # scale all the numerical columns using the new MinMaxScaler
51
+ df[numeric_columns] = df_scaled.copy()
52
+
53
+ df_encoded = pd.get_dummies(
54
+ df, columns=categorical_columns, drop_first=False
55
+ ) # get one-hot encoding for all categorical values
56
+ df_encoded = df_encoded.astype(
57
+ float
58
+ ) # convert the one-hot encoding into floats (values between 0.0 - 1.0)
59
+ new_columns = list(
60
+ set(df_encoded.columns) - set(numeric_columns)
61
+ ) # get the list of the new columns (former categorical columns)
62
+ df = (
63
+ df_encoded.copy()
64
+ ) # the dataframe is now the one with all the one-hot encoded features
65
+ numeric_columns.extend(
66
+ new_columns
67
+ ) # add the new columns to the list of numerical columns
68
+
69
+ self.numeric_columns = numeric_columns
70
+ self.df = df
71
+
72
+ def train_model(self):
73
+ # FEATURE SELECTION
74
+
75
+ correlation_matrix = self.df[self.numeric_columns].corr()
76
+ # calculating the Pearson’s correlation coefficient p-value for each element in the matrix
77
+ p_values = pd.DataFrame(
78
+ np.zeros((len(self.numeric_columns), len(self.numeric_columns))),
79
+ columns=self.numeric_columns,
80
+ index=self.numeric_columns,
81
+ )
82
+ # Calculate p-values for each pair
83
+ for col1 in self.numeric_columns:
84
+ for col2 in self.numeric_columns:
85
+ if col1 != col2:
86
+ _, p_value = pearsonr(
87
+ self.df[col1], self.df[col2]
88
+ ) # using scipy.stats.pearsonr to get the p-value for one pair of feature
89
+ p_values.loc[col1, col2] = p_value
90
+ else:
91
+ p_values.loc[col1, col2] = (
92
+ 1 # Set to 1 to not get the relation when trying to find correlations between features
93
+ )
94
+
95
+ # Identifying variables that are correlated
96
+ # When the p-value is smaller than 0.05, there is likely a “real” relationship between the variables.
97
+ correlated_columns = []
98
+ for i, col1 in enumerate(self.numeric_columns):
99
+ for j, col2 in enumerate(self.numeric_columns):
100
+ if (
101
+ j > i
102
+ and p_values.loc[col1, col2] < 0.05
103
+ and col1 != self.target_column
104
+ and col2 != self.target_column
105
+ ):
106
+ correlated_columns.append((col1, col2, p_values.loc[col1, col2]))
107
+
108
+ # remove the target to the list of features
109
+ self.numeric_columns.remove(self.target_column)
110
+
111
+ # Identify features with a low correlation with the target
112
+ target_corr = correlation_matrix[self.target_column].copy()
113
+ correlation_treshold = self.correlation_treshold
114
+ features_to_remove = target_corr[abs(target_corr) < correlation_treshold].index
115
+ features_to_remove = set(features_to_remove.to_list())
116
+
117
+ # Identify redundant features using p-values
118
+ x = {"keep": set(), "remove": set()}
119
+ for corr_duo in correlated_columns:
120
+ # put the feature with the highest correlation to the target variable in "keep" and the other one in "remove"
121
+ if target_corr[corr_duo[0]] > target_corr[corr_duo[1]]:
122
+ x["keep"].add(corr_duo[0])
123
+ x["remove"].add(corr_duo[1])
124
+ else:
125
+ x["keep"].add(corr_duo[1])
126
+ x["remove"].add(corr_duo[0])
127
+
128
+ # remove features that are already removed from "keep"
129
+ x["keep"] = x["keep"] - features_to_remove
130
+
131
+ # remove features that are in "remove" and not in "keep"
132
+ redundant_features = x["remove"] - x["keep"]
133
+
134
+ features_to_remove = features_to_remove.union(redundant_features)
135
+
136
+ # Remove the selected features from the dataframe
137
+ for feature in list(features_to_remove):
138
+ self.numeric_columns.remove(feature)
139
+ self.df.drop(feature, axis=1, inplace=True)
140
+ self.features_to_remove = features_to_remove
141
+
142
+ print(
143
+ f"List of numerical features that will be used to predict the target ({self.target_column}) :"
144
+ )
145
+ print(self.numeric_columns)
146
+
147
+ # CREATE & TRAIN MODEL
148
+
149
+ # split the data
150
+ X = self.df[self.numeric_columns]
151
+ y = self.df[self.target_column]
152
+
153
+ # 20% of the dataset will be use as test data
154
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
155
+
156
+ self.model = MLPRegressor(
157
+ hidden_layer_sizes=self.dimension,
158
+ activation="relu", # ReLU activation function
159
+ solver="adam", # Adam optimizer
160
+ max_iter=1, # One iteration per fit call since the training loop is defined below
161
+ warm_start=True,
162
+ ) # Used to measure the MSE throughout the iterations
163
+
164
+ # ignoring the warning raised because we're using a manual loop for training
165
+ warnings.filterwarnings("ignore", category=ConvergenceWarning)
166
+
167
+ # Track MSE values during training
168
+ mse_values = []
169
+ epochs = self.epochs
170
+
171
+ for epoch in range(epochs):
172
+ # Train the model
173
+ self.model.fit(X_train, y_train)
174
+
175
+ # Predict on the test set
176
+ y_pred = self.model.predict(X_test)
177
+
178
+ # Evaluate the model
179
+ mse = mean_squared_error(y_test, y_pred)
180
+ mse_values.append(mse)
181
+
182
+ # SAVE THE EVOLUTION OF THE MSE THROUGHOUT THE TRAINING
183
+ plt.figure(figsize=(10, 6))
184
+ plt.plot(range(epochs), mse_values, marker='o', linestyle='-')
185
+ plt.title(f"Evolution of MSE During Training. Final MSE = {mse:.4f}")
186
+ plt.xlabel('Epoch')
187
+ plt.ylabel('Mean Squared Error')
188
+ plt.grid(True)
189
+ plt.savefig(os.path.join("app", "NeuralNetwork", "graph.png"))
190
+
191
+ print(f"Final epoch MSE: {mse:.4f}")
192
+
193
+ def predict(self, input_data: pd.DataFrame) -> float:
194
+ # scale the input using the scaler used during training
195
+ df_used_for_scaling = input_data[
196
+ [
197
+ col
198
+ for col in input_data.columns
199
+ if col
200
+ not in [
201
+ "Gender_Male",
202
+ "Gender_Female",
203
+ "Workout_Type_Strength",
204
+ "Workout_Type_Yoga",
205
+ "Workout_Type_HIIT",
206
+ "Workout_Type_Cardio",
207
+ ]
208
+ ]
209
+ ]
210
+ scaled_input = self.scaler.transform(
211
+ input_data[[col for col in df_used_for_scaling.columns]]
212
+ )
213
+ input_data[df_used_for_scaling.columns] = scaled_input.copy()
214
+
215
+ # keep only the required features for the prediction
216
+ input_data = input_data.drop(self.features_to_remove, axis=1, errors="ignore")
217
+
218
+ input_data = input_data[self.numeric_columns]
219
+
220
+ print("Prediction using the following input : ")
221
+ print(input_data.to_csv())
222
+
223
+ water_intake = self.model.predict(input_data)
224
+ return water_intake
NeuralNetwork/__pycache__/NeuralNetwork.cpython-312.pyc ADDED
Binary file (9.06 kB). View file
 
NeuralNetwork/graph.png ADDED
RandomForest/your code here ADDED
File without changes
SVM/SVM_C.py ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import pickle
3
+ import pandas as pd
4
+
5
+ class SVM_Classifier:
6
+ def __init__(self):
7
+
8
+ self.weight = 70 # default weight in kg
9
+ self.height = 1.75 # default height in m
10
+ self.gender = "Male" # default gender
11
+ self.duration = 1.0 # default duration in hours
12
+ self.fat = 25 # default fat percentage
13
+ self.freq = 3 # default workouts per week
14
+ self.experience = 1 # default experience level
15
+ self.workout = "Cardio" # default workout type
16
+
17
+ # Add debug info dictionary
18
+ self.debug_info = {}
19
+
20
+ # Load the model and required data
21
+ try:
22
+ # Load the SVM model
23
+ model_file = os.path.join("app", "data", "svm_model.pkl")
24
+ with open(model_file, 'rb') as f:
25
+ self.svm_model = pickle.load(f)
26
+
27
+ # Load the column names
28
+ cols_file = os.path.join("app", "data", "column_names.csv")
29
+ with open(cols_file, 'r') as f:
30
+ self.column_names = [line.strip() for line in f]
31
+
32
+ # Load normalization parameters
33
+ mean_file = os.path.join("app", "data", "SVM_train_mean.csv")
34
+ self.df_mean = pd.read_csv(mean_file, index_col=0)
35
+
36
+ std_file = os.path.join("app", "data", "SVM_train_std.csv")
37
+ self.df_std = pd.read_csv(std_file, index_col=0)
38
+
39
+ except Exception as e:
40
+ print(f"Error loading model files: {str(e)}")
41
+ raise
42
+
43
+ def make_prediction(self):
44
+ try:
45
+ num = [self.weight, self.height, self.duration, self.fat, self.freq, self.experience]
46
+ self.debug_info['original_values'] = dict(zip(
47
+ ['weight', 'height', 'duration', 'fat', 'freq', 'experience'],
48
+ num
49
+ ))
50
+
51
+ m_norm = self.df_mean.values.flatten().tolist()
52
+ s_norm = self.df_std.values.flatten().tolist()
53
+ self.debug_info['normalization'] = {
54
+ 'means': m_norm,
55
+ 'stds': s_norm
56
+ }
57
+
58
+ norm = [(x-y)/z for x, y, z in zip(num, m_norm, s_norm)]
59
+ self.debug_info['normalized_values'] = dict(zip(
60
+ ['weight', 'height', 'duration', 'fat', 'freq', 'experience'],
61
+ norm
62
+ ))
63
+
64
+ if self.gender == 'Female':
65
+ norm.extend([1,0])
66
+ self.debug_info['gender_encoding'] = 'Female: [1, 0]'
67
+ else:
68
+ norm.extend([0,1])
69
+ self.debug_info['gender_encoding'] = 'Male: [0, 1]'
70
+
71
+ # Add one-hot encoded workout type
72
+ workout_encoding = {
73
+ 'Cardio': [1, 0, 0, 0],
74
+ 'HIIT': [0, 1, 0, 0],
75
+ 'Strength': [0, 0, 1, 0],
76
+ 'Yoga': [0, 0, 0, 1]
77
+ }
78
+ norm.extend(workout_encoding[self.workout])
79
+ self.debug_info['workout_encoding'] = f'{self.workout}: {workout_encoding[self.workout]}'
80
+
81
+ X = pd.DataFrame([norm],columns=self.column_names)
82
+ self.debug_info['final_feature_vector'] = X.to_dict('records')[0]
83
+
84
+ prediction = self.svm_model.predict(X)
85
+ self.debug_info['prediction'] = prediction[0]
86
+
87
+ return prediction[0]
88
+
89
+ except Exception as e:
90
+ self.debug_info['error'] = str(e)
91
+ return f"Error: {str(e)}"
92
+
93
+ def get_debug_info(self):
94
+ """Returns formatted debug information"""
95
+ debug_text = "=== DEBUG INFORMATION ===\n\n"
96
+
97
+ # Original values
98
+ debug_text += "Original Values:\n"
99
+ for key, value in self.debug_info['original_values'].items():
100
+ debug_text += f"{key}: {value}\n"
101
+
102
+ # Normalization parameters
103
+ debug_text += "\nNormalization Parameters:\n"
104
+ for i, (mean, std) in enumerate(zip(
105
+ self.debug_info['normalization']['means'],
106
+ self.debug_info['normalization']['stds']
107
+ )):
108
+ debug_text += f"Feature {i}: mean={mean:.4f}, std={std:.4f}\n"
109
+
110
+ # Normalized values
111
+ debug_text += "\nNormalized Values:\n"
112
+ for key, value in self.debug_info['normalized_values'].items():
113
+ debug_text += f"{key}: {value:.4f}\n"
114
+
115
+ # Encodings
116
+ debug_text += f"\nGender Encoding: {self.debug_info['gender_encoding']}\n"
117
+ debug_text += f"Workout Encoding: {self.debug_info['workout_encoding']}\n"
118
+
119
+ # Final vector
120
+ debug_text += f"\nVector: {self.debug_info['final_feature_vector']}\n"
121
+
122
+ # Final prediction
123
+ debug_text += f"\nFinal Prediction: {self.debug_info['prediction']}\n"
124
+
125
+ return debug_text
SVM/SVM_R.py ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import pickle
3
+ import pandas as pd
4
+
5
+ class SVM_Regressor:
6
+ def __init__(self):
7
+
8
+ self.weight = 70 # default weight in kg
9
+ self.height = 1.75 # default height in m
10
+ self.gender = "Male" # default gender
11
+ self.duration = 1.0 # default duration in hours
12
+ self.fat = 25 # default fat percentage
13
+ self.freq = 3 # default workouts per week
14
+ self.experience = 1 # default experience level
15
+ self.workout = "Cardio" # default workout type
16
+
17
+ # Add debug info dictionary
18
+ self.debug_info = {}
19
+
20
+ # Load the model and required data
21
+ try:
22
+ # Load the SVM model
23
+ model_file = os.path.join("app", "data", "svr_model.pkl")
24
+ with open(model_file, 'rb') as f:
25
+ self.svm_model = pickle.load(f)
26
+
27
+ # Load the column names
28
+ cols_file = os.path.join("app", "data", "column_names.csv")
29
+ with open(cols_file, 'r') as f:
30
+ self.column_names = [line.strip() for line in f]
31
+
32
+ # Load normalization parameters
33
+ Xmean_file = os.path.join("app", "data", "SVR_train_mean.csv")
34
+ self.df_mean = pd.read_csv(Xmean_file, index_col=0)
35
+
36
+ Xstd_file = os.path.join("app", "data", "SVR_train_std.csv")
37
+ self.df_std = pd.read_csv(Xstd_file, index_col=0)
38
+
39
+ ynorm_file = os.path.join("app", "data", "svr_y_norms.csv")
40
+ df_ynorm = pd.read_csv(ynorm_file, index_col=False)
41
+ self.y_mean = df_ynorm['y_mean'].iloc[0]
42
+ self.y_std = df_ynorm['y_std'].iloc[0]
43
+
44
+ except Exception as e:
45
+ print(f"Error loading model files: {str(e)}")
46
+ raise
47
+
48
+ def make_prediction(self):
49
+ try:
50
+ num = [self.weight, self.height, self.duration, self.fat, self.freq, self.experience]
51
+ self.debug_info['original_values'] = dict(zip(
52
+ ['weight', 'height', 'duration', 'fat', 'freq', 'experience'],
53
+ num
54
+ ))
55
+
56
+ m_norm = self.df_mean.values.flatten().tolist()
57
+ s_norm = self.df_std.values.flatten().tolist()
58
+ self.debug_info['normalization'] = {
59
+ 'means': m_norm,
60
+ 'stds': s_norm
61
+ }
62
+
63
+ norm = [(x-y)/z for x, y, z in zip(num, m_norm, s_norm)]
64
+ self.debug_info['normalized_values'] = dict(zip(
65
+ ['weight', 'height', 'duration', 'fat', 'freq', 'experience'],
66
+ norm
67
+ ))
68
+
69
+ if self.gender == 'Female':
70
+ norm.extend([1,0])
71
+ self.debug_info['gender_encoding'] = 'Female: [1, 0]'
72
+ else:
73
+ norm.extend([0,1])
74
+ self.debug_info['gender_encoding'] = 'Male: [0, 1]'
75
+
76
+ # Add one-hot encoded workout type
77
+ workout_encoding = {
78
+ 'Cardio': [1, 0, 0, 0],
79
+ 'HIIT': [0, 1, 0, 0],
80
+ 'Strength': [0, 0, 1, 0],
81
+ 'Yoga': [0, 0, 0, 1]
82
+ }
83
+ norm.extend(workout_encoding[self.workout])
84
+ self.debug_info['workout_encoding'] = f'{self.workout}: {workout_encoding[self.workout]}'
85
+
86
+ X = pd.DataFrame([norm],columns=self.column_names)
87
+ self.debug_info['final_feature_vector'] = X.to_dict('records')[0]
88
+
89
+ prediction = self.svm_model.predict(X)
90
+ self.debug_info['prediction'] = prediction[0]
91
+
92
+ return f"""It is recommended to take {(prediction[0]*self.y_std + self.y_mean):.2f} litres of water for this session."""
93
+
94
+ except Exception as e:
95
+ self.debug_info['error'] = str(e)
96
+ return f"Error: {str(e)}"
97
+
98
+ def get_debug_info(self):
99
+ """Returns formatted debug information"""
100
+ debug_text = "=== DEBUG INFORMATION ===\n\n"
101
+
102
+ # Original values
103
+ debug_text += "Original Values:\n"
104
+ for key, value in self.debug_info['original_values'].items():
105
+ debug_text += f"{key}: {value}\n"
106
+
107
+ # Normalization parameters
108
+ debug_text += "\nNormalization Parameters:\n"
109
+ for i, (mean, std) in enumerate(zip(
110
+ self.debug_info['normalization']['means'],
111
+ self.debug_info['normalization']['stds']
112
+ )):
113
+ debug_text += f"Feature {i}: mean={mean:.4f}, std={std:.4f}\n"
114
+
115
+ # Normalized values
116
+ debug_text += "\nNormalized Values:\n"
117
+ for key, value in self.debug_info['normalized_values'].items():
118
+ debug_text += f"{key}: {value:.4f}\n"
119
+
120
+ # Encodings
121
+ debug_text += f"\nGender Encoding: {self.debug_info['gender_encoding']}\n"
122
+ debug_text += f"Workout Encoding: {self.debug_info['workout_encoding']}\n"
123
+
124
+ # Final vector
125
+ debug_text += f"\nVector: {self.debug_info['final_feature_vector']}\n"
126
+
127
+ # Final prediction
128
+ debug_text += f"\nFinal Prediction: {self.debug_info['prediction']}\n"
129
+
130
+ return debug_text
SVM/__pycache__/SVM_C.cpython-312.pyc ADDED
Binary file (6.39 kB). View file
 
SVM/__pycache__/SVM_R.cpython-312.pyc ADDED
Binary file (6.94 kB). View file
 
SVM/your code here ADDED
File without changes
data/SVM_train_mean.csv ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ ,0
2
+ Weight (kg),73.34884979702301
3
+ Height (m),1.7188362652232745
4
+ Session_Duration (hours),1.2282408660351827
5
+ Fat_Percentage,25.646143437077132
6
+ Workout_Frequency (days/week),3.2205683355886334
7
+ Experience_Level,1.7456021650879567
data/SVM_train_std.csv ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ ,0
2
+ Weight (kg),21.0623331745688
3
+ Height (m),0.12762261858774263
4
+ Session_Duration (hours),0.32066224057136233
5
+ Fat_Percentage,5.79558944870914
6
+ Workout_Frequency (days/week),0.8418647527500103
7
+ Experience_Level,0.7063141541349356
data/SVR_train_mean.csv ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ ,0
2
+ Weight (kg),73.34884979702301
3
+ Height (m),1.7188362652232745
4
+ Session_Duration (hours),1.2282408660351827
5
+ Fat_Percentage,25.646143437077132
6
+ Workout_Frequency (days/week),3.2205683355886334
7
+ Experience_Level,1.7456021650879567
data/SVR_train_std.csv ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ ,0
2
+ Weight (kg),21.0623331745688
3
+ Height (m),0.12762261858774263
4
+ Session_Duration (hours),0.32066224057136233
5
+ Fat_Percentage,5.79558944870914
6
+ Workout_Frequency (days/week),0.8418647527500103
7
+ Experience_Level,0.7063141541349356
data/column_names.csv ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Weight (kg)
2
+ Height (m)
3
+ Session_Duration (hours)
4
+ Fat_Percentage
5
+ Workout_Frequency (days/week)
6
+ Experience_Level
7
+ Gender_Female
8
+ Gender_Male
9
+ Workout_Type_Cardio
10
+ Workout_Type_HIIT
11
+ Workout_Type_Strength
12
+ Workout_Type_Yoga
data/gym_members_exercise_tracking.csv ADDED
@@ -0,0 +1,974 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Age,Gender,Weight (kg),Height (m),Max_BPM,Avg_BPM,Resting_BPM,Session_Duration (hours),Calories_Burned,Workout_Type,Fat_Percentage,Water_Intake (liters),Workout_Frequency (days/week),Experience_Level,BMI
2
+ 56,Male,88.3,1.71,180,157,60,1.69,1313.0,Yoga,12.6,3.5,4,3,30.2
3
+ 46,Female,74.9,1.53,179,151,66,1.3,883.0,HIIT,33.9,2.1,4,2,32.0
4
+ 32,Female,68.1,1.66,167,122,54,1.11,677.0,Cardio,33.4,2.3,4,2,24.71
5
+ 25,Male,53.2,1.7,190,164,56,0.59,532.0,Strength,28.8,2.1,3,1,18.41
6
+ 38,Male,46.1,1.79,188,158,68,0.64,556.0,Strength,29.2,2.8,3,1,14.39
7
+ 56,Female,58.0,1.68,168,156,74,1.59,1116.0,HIIT,15.5,2.7,5,3,20.55
8
+ 36,Male,70.3,1.72,174,169,73,1.49,1385.0,Cardio,21.3,2.3,3,2,23.76
9
+ 40,Female,69.7,1.51,189,141,64,1.27,895.0,Cardio,30.6,1.9,3,2,30.57
10
+ 28,Male,121.7,1.94,185,127,52,1.03,719.0,Strength,28.9,2.6,4,2,32.34
11
+ 28,Male,101.8,1.84,169,136,64,1.08,808.0,Cardio,29.7,2.7,3,1,30.07
12
+ 41,Male,120.8,1.67,188,146,54,0.82,593.0,HIIT,20.5,3.0,2,1,43.31
13
+ 53,Male,51.7,1.7,175,152,72,1.15,865.0,HIIT,23.6,3.5,3,2,17.89
14
+ 57,Male,112.5,1.61,195,165,61,1.24,1013.0,Cardio,22.1,2.7,3,2,43.4
15
+ 41,Male,94.5,2.0,179,136,69,1.18,794.0,HIIT,27.6,3.7,3,1,23.62
16
+ 20,Male,117.7,1.81,196,161,54,1.35,1195.0,Yoga,26.4,3.3,3,2,35.93
17
+ 39,Female,42.5,1.75,181,131,52,1.13,740.0,Strength,26.2,2.1,2,1,13.88
18
+ 19,Female,64.0,1.53,166,167,58,1.33,1111.0,HIIT,29.8,2.3,3,2,27.34
19
+ 41,Female,43.8,1.77,182,165,58,1.19,884.0,Cardio,31.9,1.6,3,1,13.98
20
+ 47,Female,66.8,1.75,199,146,56,1.13,742.0,Strength,32.8,2.5,3,2,21.81
21
+ 55,Female,75.2,1.67,188,167,51,1.37,1030.0,HIIT,25.2,2.2,2,1,26.96
22
+ 19,Male,89.0,1.77,175,127,72,1.5,1048.0,Strength,28.9,3.7,4,2,28.41
23
+ 38,Male,71.9,1.77,197,142,72,1.12,875.0,Cardio,25.7,3.1,2,1,22.95
24
+ 50,Female,71.0,1.68,187,161,70,1.17,848.0,Yoga,33.1,2.5,2,1,25.16
25
+ 29,Male,120.9,1.78,197,168,65,0.78,721.0,Yoga,28.1,3.4,2,1,38.16
26
+ 39,Female,64.3,1.69,190,148,58,1.25,925.0,HIIT,26.9,1.9,4,2,22.51
27
+ 42,Female,63.7,1.71,173,169,62,1.42,1080.0,Yoga,26.1,1.8,3,2,21.78
28
+ 44,Male,65.2,1.8,192,139,68,0.73,502.0,HIIT,27.2,2.7,2,1,20.12
29
+ 59,Male,53.9,1.75,168,135,69,1.48,989.0,Strength,21.6,2.8,4,2,17.6
30
+ 45,Male,84.9,1.86,186,136,66,1.64,1104.0,HIIT,14.2,3.5,5,3,24.54
31
+ 33,Female,78.0,1.68,183,135,55,1.29,871.0,HIIT,32.3,1.8,3,2,27.64
32
+ 32,Male,108.2,1.8,172,138,53,1.27,964.0,HIIT,28.4,3.5,3,1,33.4
33
+ 20,Female,65.4,1.52,185,127,50,1.03,654.0,Yoga,28.0,2.2,4,2,28.31
34
+ 54,Female,50.2,1.61,188,157,67,1.48,1046.0,HIIT,28.2,2.7,2,1,19.37
35
+ 24,Female,58.9,1.51,187,157,68,1.04,816.0,Cardio,31.7,2.5,2,1,25.83
36
+ 38,Male,81.4,1.71,187,148,58,1.52,1237.0,HIIT,10.2,3.5,5,3,27.84
37
+ 26,Male,127.6,1.73,167,160,62,1.32,1162.0,Strength,27.3,2.9,3,1,42.63
38
+ 56,Female,59.3,1.56,182,155,57,1.26,879.0,Cardio,33.4,2.6,4,2,24.37
39
+ 35,Male,96.9,1.71,188,145,72,1.34,1069.0,Strength,24.2,2.9,3,2,33.14
40
+ 21,Male,62.6,1.81,164,150,62,1.3,1072.0,Strength,27.6,3.5,4,2,19.11
41
+ 42,Male,45.5,1.6,166,163,64,1.31,1057.0,Strength,21.7,2.6,3,2,17.77
42
+ 31,Female,48.8,1.51,195,131,60,1.48,969.0,Cardio,28.2,2.0,2,1,21.4
43
+ 26,Female,44.3,1.6,186,136,61,1.08,734.0,Cardio,34.7,2.0,3,1,17.3
44
+ 43,Male,113.2,1.83,161,134,63,1.45,962.0,Yoga,29.9,2.9,4,2,33.8
45
+ 19,Female,60.5,1.59,184,128,53,1.14,730.0,Cardio,30.1,2.2,2,1,23.93
46
+ 37,Male,124.2,1.76,168,158,50,1.5,1304.0,HIIT,29.3,2.8,2,1,40.1
47
+ 45,Male,52.4,1.85,186,161,73,1.2,956.0,Strength,25.2,2.5,3,1,15.31
48
+ 24,Male,54.7,1.74,160,167,53,0.84,772.0,Yoga,22.9,3.6,3,1,18.07
49
+ 25,Male,88.1,1.95,182,131,68,1.41,1016.0,Cardio,22.7,3.0,2,1,23.17
50
+ 52,Female,59.7,1.71,169,151,58,1.23,836.0,Strength,34.3,2.0,3,1,20.42
51
+ 31,Female,79.7,1.54,184,144,59,1.03,742.0,Cardio,26.7,2.3,4,2,33.61
52
+ 34,Female,51.0,1.62,162,158,53,1.42,1122.0,Yoga,30.8,2.4,3,2,19.43
53
+ 53,Male,84.2,1.76,165,137,69,1.67,1133.0,Cardio,12.8,3.5,5,3,27.18
54
+ 57,Male,122.1,1.89,165,134,58,1.13,750.0,Cardio,27.4,3.6,3,1,34.18
55
+ 21,Male,96.7,1.72,161,151,62,1.26,1046.0,Strength,25.0,2.8,3,1,32.69
56
+ 19,Female,73.0,1.79,177,125,61,0.81,506.0,HIIT,27.7,1.6,3,1,22.78
57
+ 23,Male,114.8,1.6,182,163,60,1.47,1318.0,Cardio,21.7,2.7,4,2,44.84
58
+ 59,Female,65.5,1.52,161,162,61,1.4,1021.0,Yoga,31.2,2.1,3,2,28.35
59
+ 21,Female,50.3,1.52,171,154,67,1.08,832.0,Cardio,32.2,2.6,3,1,21.77
60
+ 46,Female,61.0,1.71,181,153,61,1.67,1150.0,Cardio,17.8,2.7,4,3,20.86
61
+ 35,Female,44.6,1.62,196,157,65,0.56,440.0,HIIT,32.4,2.0,2,1,16.99
62
+ 43,Female,58.2,1.61,179,124,54,1.04,580.0,Strength,26.4,2.6,3,2,22.45
63
+ 51,Female,44.8,1.63,198,137,69,1.08,666.0,Yoga,33.8,2.1,4,2,16.86
64
+ 27,Male,87.5,1.63,183,135,74,1.75,1299.0,Strength,12.9,3.5,5,3,32.93
65
+ 53,Male,51.8,1.74,179,127,61,1.23,773.0,Strength,21.3,3.7,3,2,17.11
66
+ 31,Female,64.4,1.7,160,144,70,1.97,1418.0,Strength,17.3,2.7,5,3,22.28
67
+ 48,Female,67.1,1.61,160,151,74,0.62,421.0,Cardio,33.4,1.5,2,1,25.89
68
+ 32,Male,85.9,1.6,176,145,60,1.99,1587.0,HIIT,14.5,3.5,5,3,33.55
69
+ 25,Female,65.4,1.77,160,141,58,0.89,627.0,Cardio,27.6,2.6,3,1,20.88
70
+ 31,Female,61.1,1.76,189,150,67,1.81,1358.0,Yoga,18.6,2.7,4,3,19.72
71
+ 40,Male,106.5,1.65,162,162,74,1.32,1176.0,HIIT,21.0,3.6,4,2,39.12
72
+ 57,Female,64.0,1.52,170,129,52,1.73,1004.0,Strength,15.2,2.7,5,3,27.7
73
+ 38,Female,61.4,1.54,183,131,69,1.47,963.0,HIIT,30.6,2.7,3,2,25.89
74
+ 33,Female,40.5,1.63,181,147,66,1.07,786.0,Yoga,31.9,1.5,4,2,15.24
75
+ 35,Male,70.1,1.79,185,125,63,1.08,743.0,Cardio,28.0,2.3,3,2,21.88
76
+ 41,Male,94.1,1.62,172,139,50,1.13,777.0,Cardio,23.4,3.1,4,2,35.86
77
+ 43,Male,55.5,1.82,160,124,66,1.08,663.0,Strength,20.1,2.0,3,1,16.76
78
+ 42,Female,53.7,1.72,183,142,74,1.37,875.0,Cardio,29.8,1.6,3,1,18.15
79
+ 58,Female,66.1,1.75,169,128,57,0.63,363.0,Cardio,25.2,1.8,2,1,21.58
80
+ 46,Male,103.9,1.77,194,148,54,1.18,864.0,Yoga,20.9,2.9,2,1,33.16
81
+ 32,Female,61.7,1.58,183,135,54,1.87,1262.0,HIIT,16.6,2.7,5,3,24.72
82
+ 18,Female,52.3,1.74,187,165,58,1.2,990.0,Cardio,29.4,2.2,2,1,17.27
83
+ 42,Female,59.5,1.74,195,141,52,1.78,1129.0,Yoga,16.4,2.7,5,3,19.65
84
+ 24,Female,72.9,1.76,175,127,68,0.86,546.0,Yoga,30.8,1.5,3,1,23.53
85
+ 26,Female,76.7,1.63,199,139,72,1.08,751.0,Strength,25.6,1.7,2,1,28.87
86
+ 41,Male,72.1,1.83,175,133,58,1.13,744.0,Yoga,21.4,2.8,3,2,21.53
87
+ 18,Female,54.8,1.68,176,158,71,1.27,1003.0,Strength,32.0,2.2,4,2,19.42
88
+ 25,Male,105.0,1.88,174,156,67,1.34,1150.0,Cardio,21.4,2.3,3,2,29.71
89
+ 41,Female,55.0,1.55,175,169,65,1.45,1103.0,Strength,31.4,2.0,4,2,22.89
90
+ 28,Male,81.6,1.66,174,153,50,1.09,917.0,Yoga,20.5,3.5,4,2,29.61
91
+ 34,Female,75.6,1.6,193,130,51,0.64,416.0,HIIT,29.1,2.7,2,1,29.53
92
+ 25,Male,81.5,1.61,170,159,63,1.93,1688.0,HIIT,10.9,3.5,4,3,31.44
93
+ 52,Female,61.5,1.69,160,152,63,1.8,1231.0,Cardio,15.5,2.7,4,3,21.53
94
+ 52,Male,74.0,1.63,174,150,50,1.26,936.0,Cardio,25.7,3.7,3,2,27.85
95
+ 50,Female,56.4,1.59,185,163,74,1.26,924.0,HIIT,34.3,2.6,3,1,22.31
96
+ 22,Male,102.6,1.84,163,153,65,1.25,1052.0,Strength,20.5,2.7,3,2,30.3
97
+ 59,Female,54.6,1.57,164,169,64,0.58,441.0,Cardio,29.2,2.3,3,1,22.15
98
+ 56,Male,129.0,1.78,194,126,64,1.29,805.0,Yoga,27.1,2.7,2,1,40.71
99
+ 58,Male,103.5,1.66,172,168,61,1.33,1106.0,Cardio,24.6,3.1,3,1,37.56
100
+ 45,Female,59.4,1.51,169,142,65,1.15,735.0,Strength,33.1,1.9,4,2,26.05
101
+ 24,Female,60.1,1.79,170,165,63,1.97,1625.0,Cardio,15.9,2.7,4,3,18.76
102
+ 26,Male,77.7,1.62,177,126,73,1.16,804.0,Yoga,29.6,3.0,3,2,29.61
103
+ 25,Female,41.2,1.62,193,144,64,1.49,1073.0,Yoga,28.9,2.1,4,2,15.7
104
+ 29,Male,58.6,1.61,198,122,72,1.2,805.0,Yoga,23.4,2.0,3,2,22.61
105
+ 51,Male,109.3,1.78,182,157,64,0.54,420.0,Strength,28.7,3.3,3,1,34.5
106
+ 50,Male,69.6,1.96,166,139,68,0.97,667.0,Strength,25.6,2.0,3,1,18.12
107
+ 40,Female,56.2,1.79,198,153,57,1.79,1369.0,Yoga,17.6,2.7,5,3,17.54
108
+ 41,Male,71.7,1.96,162,168,51,0.51,424.0,Yoga,27.3,2.5,2,1,18.66
109
+ 54,Male,86.0,1.93,171,163,51,1.74,1404.0,Strength,12.9,3.5,5,3,23.09
110
+ 52,Female,79.4,1.59,166,163,59,1.39,1020.0,Strength,26.6,1.5,3,2,31.41
111
+ 57,Female,78.4,1.62,185,149,52,1.01,677.0,Strength,31.7,2.0,4,2,29.87
112
+ 39,Female,55.4,1.6,192,136,72,1.44,979.0,HIIT,26.3,1.6,3,2,21.64
113
+ 44,Female,61.7,1.55,196,129,66,1.41,819.0,Strength,33.1,2.6,4,2,25.68
114
+ 52,Male,85.5,1.82,174,154,57,1.78,1357.0,Yoga,14.9,3.5,4,3,25.81
115
+ 18,Male,87.6,1.93,161,139,72,1.72,1315.0,HIIT,11.9,3.5,4,3,23.52
116
+ 52,Male,82.4,1.72,166,137,53,1.01,685.0,Strength,24.4,2.7,4,2,27.85
117
+ 54,Male,67.0,1.68,191,164,63,0.55,446.0,Yoga,20.5,2.8,3,1,23.74
118
+ 31,Female,42.3,1.6,163,163,70,1.09,888.0,Cardio,25.1,1.9,3,2,16.52
119
+ 20,Male,82.7,1.99,179,146,59,1.69,1357.0,HIIT,14.6,3.5,5,3,20.88
120
+ 18,Male,92.4,1.74,195,168,50,1.41,1303.0,Yoga,21.3,3.1,2,1,30.52
121
+ 22,Female,63.2,1.54,191,155,53,1.02,790.0,Cardio,29.5,2.4,4,2,26.65
122
+ 43,Male,82.7,1.85,187,142,50,1.22,858.0,Yoga,28.2,3.1,4,2,24.16
123
+ 31,Male,86.6,1.76,172,151,66,1.29,1071.0,Strength,28.9,3.3,3,2,27.96
124
+ 56,Male,129.5,1.95,160,129,66,1.0,639.0,Strength,25.2,3.5,2,1,34.06
125
+ 44,Male,98.0,1.83,194,130,56,1.28,824.0,Cardio,25.7,3.5,4,2,29.26
126
+ 26,Male,86.2,1.68,189,157,72,1.97,1701.0,Strength,13.3,3.5,5,3,30.54
127
+ 32,Male,78.6,1.62,195,125,69,1.28,880.0,Yoga,29.6,3.1,3,1,29.95
128
+ 32,Female,59.0,1.66,184,160,64,0.51,408.0,Cardio,31.0,1.8,2,1,21.41
129
+ 43,Female,57.3,1.79,175,166,62,1.98,1479.0,Yoga,17.8,2.7,4,3,17.88
130
+ 59,Male,122.3,1.89,178,153,51,0.66,500.0,Yoga,20.1,3.1,3,1,34.24
131
+ 30,Male,85.3,1.95,160,155,68,1.61,1373.0,Yoga,10.4,3.5,5,3,22.43
132
+ 49,Female,45.2,1.74,164,156,73,1.24,870.0,Strength,30.8,2.1,3,2,14.93
133
+ 56,Male,55.6,1.92,181,136,62,0.68,458.0,Strength,29.4,3.2,3,1,15.08
134
+ 49,Male,82.8,1.95,183,159,73,1.91,1503.0,Yoga,14.3,3.5,5,3,21.78
135
+ 21,Male,125.2,1.66,196,159,60,1.38,1207.0,HIIT,29.8,3.4,3,2,45.43
136
+ 47,Female,58.5,1.79,195,131,71,1.42,837.0,Yoga,30.3,2.4,4,2,18.26
137
+ 54,Male,86.1,1.95,195,140,64,1.17,811.0,Yoga,27.9,3.4,2,1,22.64
138
+ 40,Female,63.5,1.61,163,159,59,1.31,1041.0,Cardio,33.4,1.6,3,2,24.5
139
+ 56,Male,69.3,1.68,195,138,58,0.66,451.0,Yoga,26.5,2.1,2,1,24.55
140
+ 32,Female,70.5,1.62,177,122,58,1.24,756.0,Strength,28.4,1.8,2,1,26.86
141
+ 46,Female,60.1,1.65,175,137,69,1.69,1042.0,Cardio,17.3,2.7,4,3,22.08
142
+ 53,Male,94.1,1.95,177,138,50,0.89,608.0,HIIT,28.6,3.5,3,1,24.75
143
+ 30,Female,79.2,1.62,181,166,66,1.26,1046.0,Cardio,28.0,2.5,4,2,30.18
144
+ 49,Male,115.3,1.91,161,125,61,1.38,854.0,HIIT,29.2,3.2,2,1,31.61
145
+ 24,Female,62.9,1.79,180,135,59,1.42,958.0,Cardio,27.3,2.3,4,2,19.63
146
+ 39,Male,62.0,1.64,195,127,54,0.97,678.0,Cardio,27.5,3.2,3,1,23.05
147
+ 45,Male,88.5,1.78,198,167,67,1.53,1265.0,HIIT,13.2,3.5,4,3,27.93
148
+ 19,Female,73.9,1.77,198,137,64,1.28,877.0,Strength,32.5,2.6,3,2,23.59
149
+ 59,Male,50.3,1.95,188,167,55,1.07,885.0,Strength,24.4,3.4,3,1,13.23
150
+ 23,Male,83.1,1.8,185,162,56,0.7,624.0,Strength,29.3,3.1,3,1,25.65
151
+ 45,Female,65.1,1.78,180,158,66,1.46,1038.0,Cardio,31.3,2.3,3,1,20.55
152
+ 45,Male,46.6,1.79,176,168,55,1.46,1214.0,Yoga,22.9,2.4,3,2,14.54
153
+ 37,Male,103.5,1.89,175,168,57,0.54,499.0,Cardio,26.4,3.1,2,1,28.97
154
+ 47,Female,61.9,1.54,190,131,61,1.95,1150.0,Yoga,16.4,2.7,4,3,26.1
155
+ 28,Female,52.0,1.61,168,164,70,1.32,1082.0,Yoga,27.9,2.0,3,2,20.06
156
+ 45,Male,113.4,1.71,190,129,63,0.83,530.0,Strength,24.0,2.3,2,1,38.78
157
+ 42,Male,62.9,1.98,173,126,61,1.42,886.0,Yoga,28.5,3.4,4,2,16.04
158
+ 56,Female,40.4,1.8,196,165,72,1.23,913.0,Cardio,30.0,2.1,4,2,12.47
159
+ 50,Female,67.1,1.75,161,120,59,0.67,362.0,Cardio,31.8,2.7,3,1,21.91
160
+ 18,Male,70.0,1.61,173,168,71,1.3,1201.0,Strength,23.9,2.5,2,1,27.01
161
+ 44,Female,69.5,1.75,192,155,69,1.02,711.0,HIIT,27.6,2.1,3,1,22.69
162
+ 30,Male,107.9,1.66,194,140,64,1.08,832.0,Cardio,29.5,2.8,3,2,39.16
163
+ 58,Male,109.0,1.91,198,156,56,1.49,1151.0,Yoga,26.0,2.2,3,2,29.88
164
+ 20,Male,101.0,1.91,179,143,58,1.36,1070.0,Cardio,29.3,2.7,3,2,27.69
165
+ 56,Male,88.5,1.85,161,144,59,1.57,1119.0,Cardio,11.0,3.5,4,3,25.86
166
+ 23,Male,80.9,1.8,178,126,59,1.55,1074.0,Cardio,10.7,3.5,4,3,24.97
167
+ 25,Female,43.1,1.62,196,161,65,1.04,837.0,HIIT,33.6,1.8,4,2,16.42
168
+ 44,Female,59.1,1.52,177,136,56,1.58,967.0,Yoga,18.4,2.7,5,3,25.58
169
+ 26,Female,54.0,1.53,175,148,54,1.14,844.0,Strength,26.9,1.7,3,1,23.07
170
+ 54,Female,72.3,1.78,163,149,72,1.27,852.0,Cardio,27.7,1.8,2,1,22.82
171
+ 50,Male,51.1,1.98,171,126,52,0.92,574.0,Yoga,28.0,2.4,2,1,13.03
172
+ 59,Male,89.4,1.72,188,152,67,1.08,813.0,Yoga,24.5,3.2,3,1,30.22
173
+ 41,Male,51.5,1.8,166,126,60,1.09,680.0,Strength,26.7,2.1,4,2,15.9
174
+ 32,Male,87.9,1.88,173,143,64,1.52,1195.0,Cardio,11.6,3.5,5,3,24.87
175
+ 49,Female,42.0,1.52,171,130,70,1.1,644.0,HIIT,28.8,2.2,3,1,18.18
176
+ 49,Male,79.2,1.72,194,128,69,1.46,925.0,Yoga,29.9,3.3,3,1,26.77
177
+ 41,Male,64.8,1.71,164,131,54,1.2,778.0,Strength,22.5,2.8,3,2,22.16
178
+ 58,Female,63.0,1.78,176,154,73,1.58,1095.0,HIIT,17.5,2.7,4,3,19.88
179
+ 29,Female,56.2,1.77,191,123,61,0.68,418.0,Yoga,33.4,2.6,3,1,17.94
180
+ 56,Female,52.9,1.64,169,155,53,1.1,767.0,Cardio,27.4,2.3,3,2,19.67
181
+ 19,Female,49.0,1.69,176,147,64,1.05,772.0,Yoga,29.2,2.4,3,1,17.16
182
+ 20,Male,128.2,1.84,164,132,58,0.83,603.0,HIIT,26.2,2.3,3,1,37.87
183
+ 54,Male,83.6,1.86,168,142,56,1.54,1082.0,HIIT,12.4,3.5,5,3,24.16
184
+ 34,Female,56.2,1.77,192,138,59,1.81,1249.0,Cardio,17.3,2.7,5,3,17.94
185
+ 19,Male,87.8,1.78,195,161,72,1.28,1133.0,Cardio,23.6,3.3,2,1,27.71
186
+ 19,Male,85.9,1.85,195,156,62,1.66,1424.0,Strength,12.9,3.5,4,3,25.1
187
+ 45,Male,51.1,1.87,177,158,57,1.44,1126.0,Cardio,26.2,3.4,4,2,14.61
188
+ 40,Female,57.4,1.71,168,143,61,1.87,1337.0,Strength,18.3,2.7,5,3,19.63
189
+ 54,Male,114.9,1.92,188,135,71,1.2,802.0,HIIT,20.7,2.6,4,2,31.17
190
+ 49,Female,62.1,1.66,173,152,73,1.37,937.0,HIIT,31.3,1.8,3,2,22.54
191
+ 50,Male,57.1,1.91,184,131,68,1.09,707.0,Yoga,29.5,2.7,4,2,15.65
192
+ 18,Male,68.1,1.8,174,153,50,1.1,926.0,Yoga,25.4,3.3,4,2,21.02
193
+ 36,Male,69.2,1.65,165,126,65,1.23,852.0,Strength,27.2,2.7,3,1,25.42
194
+ 19,Female,65.2,1.52,188,130,71,1.23,800.0,Cardio,30.6,2.4,3,1,28.22
195
+ 43,Male,108.6,1.73,174,150,66,1.33,988.0,Cardio,28.5,2.2,2,1,36.29
196
+ 49,Female,40.0,1.65,188,148,74,1.03,686.0,Yoga,34.3,2.5,3,2,14.69
197
+ 23,Female,41.9,1.58,163,132,67,0.56,370.0,HIIT,26.8,1.8,3,1,16.78
198
+ 49,Female,68.3,1.52,177,150,60,1.45,979.0,Strength,29.4,1.8,4,2,29.56
199
+ 21,Male,88.4,1.6,198,121,67,1.71,1138.0,HIIT,12.0,3.5,4,3,34.53
200
+ 28,Male,66.0,1.9,175,158,56,1.18,1025.0,HIIT,24.1,3.0,3,1,18.28
201
+ 34,Male,71.9,1.64,170,134,67,1.26,929.0,Cardio,21.3,2.1,4,2,26.73
202
+ 55,Male,75.6,1.71,173,130,57,1.03,663.0,Strength,28.1,2.0,4,2,25.85
203
+ 41,Female,63.4,1.59,162,153,55,1.84,1267.0,HIIT,15.2,2.7,5,3,25.08
204
+ 22,Female,71.6,1.77,197,158,56,1.49,1177.0,Yoga,30.3,1.8,3,1,22.85
205
+ 51,Female,57.4,1.77,177,123,72,1.08,598.0,Yoga,31.6,2.1,4,2,18.32
206
+ 23,Male,83.8,1.99,179,130,71,1.79,1280.0,Cardio,11.0,3.5,4,3,21.16
207
+ 39,Female,55.9,1.71,184,148,59,1.95,1443.0,Yoga,19.5,2.7,5,3,19.12
208
+ 28,Male,87.0,1.76,197,121,60,1.2,799.0,Yoga,28.4,3.5,3,2,28.09
209
+ 33,Female,65.3,1.71,172,135,74,1.18,796.0,HIIT,29.7,2.5,4,2,22.33
210
+ 50,Male,45.4,1.67,163,158,62,1.37,1071.0,Yoga,24.1,2.8,4,2,16.28
211
+ 26,Male,87.1,1.87,173,132,58,1.71,1241.0,Yoga,11.2,3.5,4,3,24.91
212
+ 23,Female,78.6,1.73,192,156,56,1.47,1147.0,HIIT,32.3,1.5,4,2,26.26
213
+ 33,Female,78.0,1.71,187,136,58,1.08,734.0,Cardio,26.3,2.1,3,1,26.67
214
+ 46,Female,58.0,1.53,196,140,62,1.83,1153.0,Cardio,18.4,2.7,4,3,24.78
215
+ 20,Female,71.3,1.69,167,163,52,1.28,1043.0,Strength,33.4,2.3,3,2,24.96
216
+ 37,Male,49.1,1.74,193,138,52,1.11,842.0,Yoga,22.3,2.6,3,2,16.22
217
+ 53,Female,78.3,1.65,164,126,50,1.24,703.0,HIIT,33.7,1.6,3,1,28.76
218
+ 36,Female,57.3,1.64,164,157,70,1.13,887.0,Strength,25.3,1.8,4,2,21.3
219
+ 43,Female,48.4,1.61,190,127,69,1.28,732.0,Cardio,34.1,2.4,2,1,18.67
220
+ 20,Male,76.4,1.62,168,132,51,1.35,980.0,Cardio,21.2,2.6,4,2,29.11
221
+ 36,Male,110.2,1.77,191,156,74,1.19,1021.0,HIIT,26.5,3.4,2,1,35.18
222
+ 37,Female,72.9,1.76,192,121,52,1.21,732.0,Strength,27.5,1.9,3,2,23.53
223
+ 49,Male,82.1,1.86,162,160,64,1.87,1481.0,Strength,14.2,3.5,4,3,23.73
224
+ 24,Female,58.9,1.76,189,130,73,0.63,410.0,HIIT,30.1,1.7,3,1,19.01
225
+ 58,Male,82.2,1.87,171,143,55,1.57,1111.0,HIIT,10.7,3.5,4,3,23.51
226
+ 50,Male,96.7,1.72,188,125,62,1.46,903.0,Strength,25.7,2.7,3,2,32.69
227
+ 57,Male,81.4,1.86,162,145,70,1.8,1292.0,Cardio,12.0,3.5,5,3,23.53
228
+ 56,Male,107.8,1.73,185,126,50,1.09,680.0,Yoga,26.6,2.8,3,2,36.02
229
+ 35,Female,65.8,1.62,189,158,69,1.0,790.0,Cardio,33.8,1.5,4,2,25.07
230
+ 57,Female,68.5,1.56,168,138,68,1.45,900.0,HIIT,29.1,1.6,4,2,28.15
231
+ 18,Female,63.9,1.59,185,125,50,1.87,1169.0,Strength,16.4,2.7,4,3,25.28
232
+ 28,Male,76.3,1.62,161,162,70,1.16,1034.0,Strength,20.1,2.3,3,2,29.07
233
+ 45,Female,44.5,1.65,162,148,71,1.44,959.0,Yoga,30.7,1.6,3,1,16.35
234
+ 42,Female,50.7,1.75,163,162,51,1.29,940.0,Strength,29.0,1.9,3,2,16.56
235
+ 40,Female,55.1,1.61,184,158,64,1.55,1224.0,Yoga,16.9,2.7,4,3,21.26
236
+ 48,Male,73.7,1.61,172,121,63,1.36,815.0,Cardio,21.8,3.6,4,2,28.43
237
+ 47,Male,55.6,1.77,198,138,68,1.2,820.0,Cardio,24.3,2.9,4,2,17.75
238
+ 59,Male,86.9,1.76,194,123,60,1.13,688.0,Strength,29.8,3.1,3,2,28.05
239
+ 52,Female,60.3,1.68,182,125,64,1.6,900.0,Strength,16.5,2.7,4,3,21.36
240
+ 24,Female,40.4,1.64,168,168,55,0.99,832.0,HIIT,31.0,1.9,2,1,15.02
241
+ 33,Female,78.5,1.66,161,156,69,1.29,1006.0,HIIT,32.8,1.9,4,2,28.49
242
+ 43,Male,102.6,1.72,190,147,58,0.82,597.0,Strength,27.5,2.0,2,1,34.68
243
+ 19,Male,110.8,1.91,161,149,54,1.31,1074.0,Strength,23.3,2.9,2,1,30.37
244
+ 18,Female,60.9,1.79,191,126,69,1.11,699.0,Cardio,31.1,2.1,2,1,19.01
245
+ 29,Male,55.7,1.61,177,128,51,1.41,993.0,Strength,28.7,2.3,3,1,21.49
246
+ 22,Male,110.5,1.92,172,144,55,1.16,919.0,HIIT,20.2,3.3,3,2,29.98
247
+ 54,Male,55.2,1.71,164,152,67,0.77,579.0,Cardio,24.4,2.8,2,1,18.88
248
+ 49,Male,46.5,1.72,169,120,72,1.4,832.0,Yoga,22.2,2.6,4,2,15.72
249
+ 26,Female,70.9,1.66,184,125,68,0.81,506.0,HIIT,28.9,1.7,3,1,25.73
250
+ 58,Male,74.6,1.75,193,137,58,1.09,739.0,HIIT,24.2,2.9,2,1,24.36
251
+ 52,Male,45.1,1.72,196,129,70,0.93,594.0,Cardio,27.5,3.3,2,1,15.24
252
+ 36,Male,99.9,1.99,189,147,73,1.33,1075.0,Yoga,20.9,2.5,3,1,25.23
253
+ 33,Male,117.0,1.61,166,130,55,1.04,744.0,HIIT,25.1,2.4,3,2,45.14
254
+ 20,Female,75.9,1.73,165,152,63,1.39,1056.0,Strength,30.6,2.1,4,2,25.36
255
+ 37,Female,71.2,1.64,162,120,73,1.11,666.0,HIIT,29.9,1.7,3,2,26.47
256
+ 41,Male,78.8,1.72,172,132,62,1.01,660.0,Cardio,27.3,3.1,4,2,26.64
257
+ 50,Male,50.6,1.69,162,156,60,1.31,1012.0,Cardio,23.8,3.0,2,1,17.72
258
+ 41,Male,82.5,1.79,185,139,61,1.69,1163.0,Cardio,14.7,3.5,4,3,25.75
259
+ 28,Male,108.5,1.79,183,120,68,1.33,878.0,HIIT,24.8,2.1,4,2,33.86
260
+ 25,Male,49.9,1.98,165,122,68,1.15,772.0,Yoga,25.7,2.1,3,2,12.73
261
+ 53,Male,125.1,1.91,171,137,70,0.52,353.0,Strength,28.3,3.1,2,1,34.29
262
+ 55,Female,79.7,1.66,195,160,68,1.06,763.0,Cardio,27.8,1.9,2,1,28.92
263
+ 57,Male,126.8,1.63,161,133,73,0.96,632.0,Yoga,20.8,2.1,2,1,47.72
264
+ 37,Female,54.6,1.57,170,150,62,1.31,982.0,Strength,32.1,2.4,3,1,22.15
265
+ 52,Female,47.8,1.54,198,146,63,1.34,880.0,Cardio,29.8,1.9,3,2,20.16
266
+ 42,Male,97.9,1.91,193,136,73,1.01,680.0,Strength,29.0,2.8,3,2,26.84
267
+ 52,Female,63.1,1.54,185,165,67,1.36,1010.0,Strength,34.8,1.8,3,2,26.61
268
+ 42,Female,72.4,1.69,177,148,61,1.07,713.0,Yoga,29.0,2.3,3,2,25.35
269
+ 46,Female,58.9,1.7,180,155,53,1.52,1060.0,Strength,17.1,2.7,4,3,20.38
270
+ 35,Female,50.4,1.6,195,156,59,1.03,803.0,Cardio,29.1,1.9,4,2,19.69
271
+ 35,Female,64.2,1.59,199,145,66,1.63,1182.0,Yoga,16.6,2.7,5,3,25.39
272
+ 19,Female,58.8,1.77,181,136,53,1.4,952.0,HIIT,32.8,2.7,2,1,18.77
273
+ 52,Male,105.2,1.62,189,141,61,1.36,949.0,HIIT,27.6,3.2,3,1,40.09
274
+ 33,Female,45.9,1.5,189,144,62,0.92,662.0,Yoga,29.8,1.7,3,1,20.4
275
+ 58,Female,65.2,1.63,167,121,53,1.12,610.0,HIIT,25.4,2.0,3,2,24.54
276
+ 53,Female,56.3,1.79,193,141,59,1.52,964.0,Strength,16.5,2.7,5,3,17.57
277
+ 50,Male,90.0,1.7,168,124,74,0.81,497.0,Cardio,22.9,2.7,2,1,31.14
278
+ 21,Female,60.0,1.7,179,123,52,1.97,1212.0,Strength,19.1,2.7,5,3,20.76
279
+ 50,Male,51.5,1.71,199,155,64,1.48,1136.0,Yoga,20.9,2.9,2,1,17.61
280
+ 31,Female,63.1,1.64,184,125,51,1.54,962.0,Cardio,19.0,2.7,4,3,23.46
281
+ 38,Male,91.5,1.77,178,140,74,0.8,616.0,Yoga,26.7,3.4,2,1,29.21
282
+ 37,Male,48.7,1.67,164,132,74,1.39,1009.0,Yoga,27.3,3.0,2,1,17.46
283
+ 25,Female,57.8,1.56,170,156,66,1.35,1053.0,Yoga,29.3,1.6,3,2,23.75
284
+ 24,Female,42.0,1.75,174,144,55,0.83,598.0,Strength,31.8,2.3,3,1,13.71
285
+ 20,Male,128.4,1.92,167,145,57,0.63,502.0,Cardio,26.1,2.0,2,1,34.83
286
+ 34,Female,74.2,1.57,178,158,52,1.47,1161.0,Cardio,32.7,2.4,3,1,30.1
287
+ 50,Male,89.6,1.68,182,139,74,1.79,1232.0,Cardio,12.2,3.5,5,3,31.75
288
+ 29,Male,125.9,2.0,186,152,67,1.36,1137.0,Strength,24.7,3.1,4,2,31.48
289
+ 39,Male,105.5,1.99,199,133,71,0.81,593.0,HIIT,26.4,2.5,2,1,26.64
290
+ 39,Male,93.4,1.7,191,155,50,1.1,938.0,Strength,21.1,2.5,4,2,32.32
291
+ 47,Male,82.1,1.84,185,136,65,1.37,922.0,Strength,24.4,3.4,4,2,24.25
292
+ 55,Female,42.9,1.69,186,140,56,0.9,567.0,Yoga,34.7,2.4,2,1,15.02
293
+ 55,Male,128.4,1.68,178,165,52,1.13,923.0,Cardio,20.4,2.6,4,2,45.49
294
+ 25,Male,112.4,1.96,188,135,72,1.42,1054.0,Cardio,23.2,2.5,2,1,29.26
295
+ 44,Female,77.7,1.79,198,165,53,1.41,1047.0,HIIT,28.1,2.2,3,1,24.25
296
+ 44,Male,89.3,1.99,192,135,58,1.4,936.0,HIIT,26.3,2.0,4,2,22.55
297
+ 51,Female,70.3,1.55,178,139,54,1.4,876.0,Yoga,26.1,1.6,3,1,29.26
298
+ 38,Female,59.1,1.72,196,148,68,1.07,792.0,Cardio,31.3,1.7,3,2,19.98
299
+ 47,Female,49.9,1.69,178,147,64,1.48,979.0,HIIT,26.0,1.7,3,2,17.47
300
+ 50,Male,101.7,1.67,192,127,57,0.53,333.0,HIIT,20.9,2.9,2,1,36.47
301
+ 45,Male,93.0,1.91,175,143,55,1.03,729.0,Cardio,27.3,3.7,3,2,25.49
302
+ 50,Male,87.4,1.6,182,122,67,0.77,465.0,Strength,23.2,3.1,2,1,34.14
303
+ 22,Female,55.1,1.61,166,144,68,1.62,1166.0,HIIT,19.9,2.7,4,3,21.26
304
+ 36,Male,123.7,1.69,185,138,73,1.3,987.0,Cardio,20.4,2.1,4,2,43.31
305
+ 21,Female,61.3,1.57,191,152,64,1.94,1474.0,HIIT,17.2,2.7,4,3,24.87
306
+ 52,Male,72.3,1.94,171,121,56,1.46,874.0,Yoga,21.1,2.9,3,2,19.21
307
+ 34,Female,69.2,1.53,167,134,59,1.36,911.0,HIIT,28.5,2.1,2,1,29.56
308
+ 45,Male,81.4,1.61,164,141,55,1.14,796.0,Cardio,30.0,2.2,4,2,31.4
309
+ 47,Male,84.8,1.86,187,129,63,1.85,1181.0,HIIT,14.4,3.5,5,3,24.51
310
+ 46,Male,55.1,1.72,164,137,66,1.43,970.0,Yoga,20.5,3.6,3,2,18.62
311
+ 23,Female,59.0,1.78,185,141,58,1.67,1177.0,Yoga,17.8,2.7,5,3,18.62
312
+ 52,Female,64.9,1.51,164,165,68,1.83,1359.0,HIIT,18.2,2.7,4,3,28.46
313
+ 58,Male,109.7,1.75,181,168,54,1.01,840.0,HIIT,22.1,2.7,2,1,35.82
314
+ 54,Male,78.4,1.9,174,146,72,0.81,585.0,Yoga,21.5,3.7,2,1,21.72
315
+ 41,Female,76.7,1.79,172,132,56,1.4,832.0,Yoga,34.0,2.0,4,2,23.94
316
+ 46,Female,63.1,1.61,187,152,68,1.0,684.0,Strength,34.7,2.2,4,2,24.34
317
+ 48,Female,62.9,1.58,192,124,69,1.98,1105.0,Strength,20.0,2.7,4,3,25.2
318
+ 52,Male,85.6,1.74,182,145,56,1.84,1321.0,Yoga,13.9,3.5,4,3,28.27
319
+ 50,Female,66.3,1.57,192,132,73,1.25,742.0,HIIT,31.6,1.6,2,1,26.9
320
+ 38,Male,61.3,1.97,177,146,51,1.37,1100.0,Cardio,23.5,2.8,3,1,15.8
321
+ 49,Female,44.1,1.65,189,133,74,1.16,694.0,HIIT,26.7,1.8,4,2,16.2
322
+ 40,Male,63.8,1.62,185,143,72,1.3,1022.0,HIIT,20.8,3.4,2,1,24.31
323
+ 50,Female,55.4,1.55,175,122,65,1.85,1016.0,Strength,18.5,2.7,4,3,23.06
324
+ 20,Female,74.7,1.58,172,166,62,1.04,863.0,Strength,32.8,2.4,3,2,29.92
325
+ 35,Female,78.0,1.67,198,168,57,1.13,949.0,Strength,33.3,2.5,4,2,27.97
326
+ 42,Female,57.5,1.67,192,149,55,1.14,764.0,Yoga,34.1,2.4,2,1,20.62
327
+ 59,Female,60.7,1.73,185,154,55,1.03,714.0,Yoga,33.8,2.5,3,2,20.28
328
+ 48,Male,69.0,1.74,160,167,58,1.48,1223.0,HIIT,30.0,2.3,3,2,22.79
329
+ 20,Female,75.8,1.78,197,133,53,1.42,944.0,HIIT,27.4,2.0,4,2,23.92
330
+ 57,Female,75.7,1.63,161,131,60,0.69,407.0,Cardio,32.6,2.3,3,1,28.49
331
+ 41,Female,71.2,1.64,165,147,54,1.42,939.0,HIIT,30.9,2.3,3,2,26.47
332
+ 49,Male,85.0,1.68,197,163,74,1.82,1468.0,HIIT,11.3,3.5,4,3,30.12
333
+ 39,Female,63.6,1.56,183,148,66,1.22,903.0,Strength,34.8,2.4,2,1,26.13
334
+ 40,Male,73.2,1.94,177,162,69,0.81,722.0,Strength,29.0,2.4,2,1,19.45
335
+ 19,Female,48.3,1.52,186,136,56,0.96,653.0,Strength,26.3,1.6,2,1,20.91
336
+ 44,Female,42.8,1.78,167,159,64,1.49,1066.0,Strength,25.3,2.6,3,2,13.51
337
+ 59,Male,88.1,1.76,187,168,74,1.35,1123.0,Strength,26.9,3.0,3,2,28.44
338
+ 19,Female,72.4,1.75,169,140,64,1.2,840.0,Cardio,31.0,1.7,4,2,23.64
339
+ 43,Male,73.2,1.88,176,142,63,1.17,822.0,Cardio,29.4,3.3,3,1,20.71
340
+ 34,Male,110.5,1.86,188,139,62,1.42,1086.0,Cardio,22.3,3.6,2,1,31.94
341
+ 57,Female,46.1,1.76,165,130,60,1.44,842.0,Strength,25.8,1.7,3,2,14.88
342
+ 50,Male,90.8,1.71,173,153,62,1.07,810.0,Yoga,22.6,3.4,4,2,31.05
343
+ 26,Female,59.3,1.51,181,129,71,1.7,1096.0,Strength,15.1,2.7,5,3,26.01
344
+ 56,Female,45.1,1.73,165,129,73,0.83,482.0,Strength,25.4,2.6,3,1,15.07
345
+ 46,Male,45.0,1.77,185,162,58,1.48,1187.0,Cardio,29.1,3.6,3,2,14.36
346
+ 59,Male,89.4,1.62,198,125,59,1.43,885.0,Strength,23.5,3.6,3,2,34.06
347
+ 43,Male,127.7,1.69,171,155,53,1.14,875.0,Cardio,24.1,2.9,3,2,44.71
348
+ 52,Male,70.9,1.72,194,143,66,1.31,927.0,Strength,20.2,2.6,3,2,23.97
349
+ 42,Female,49.2,1.5,173,131,63,1.15,678.0,HIIT,27.7,1.5,3,2,21.87
350
+ 41,Female,62.3,1.79,181,162,73,1.99,1451.0,Yoga,19.0,2.7,5,3,19.44
351
+ 30,Male,64.1,1.87,182,142,67,0.64,500.0,Yoga,26.2,2.1,2,1,18.33
352
+ 24,Female,69.7,1.75,166,146,60,1.41,1029.0,Cardio,32.5,2.0,3,1,22.76
353
+ 53,Female,56.9,1.59,199,164,65,1.49,1100.0,HIIT,29.5,2.0,3,2,22.51
354
+ 37,Female,53.0,1.71,184,156,50,1.13,881.0,Yoga,28.1,1.7,4,2,18.13
355
+ 18,Female,72.7,1.55,172,125,56,0.84,525.0,Cardio,29.8,2.0,3,1,30.26
356
+ 25,Male,76.5,1.96,180,120,59,0.67,442.0,Strength,23.2,2.3,3,1,19.91
357
+ 33,Male,113.6,1.99,169,125,58,1.38,949.0,Strength,28.4,3.4,2,1,28.69
358
+ 31,Female,62.5,1.62,168,169,74,1.56,1318.0,HIIT,16.5,2.7,4,3,23.81
359
+ 29,Male,95.2,1.86,174,141,52,0.64,496.0,Yoga,26.6,2.5,2,1,27.52
360
+ 40,Male,51.7,1.82,161,160,71,0.9,792.0,Strength,21.4,3.0,3,1,15.61
361
+ 32,Male,105.3,1.67,184,143,72,0.57,448.0,Cardio,26.9,2.9,3,1,37.76
362
+ 45,Female,71.2,1.68,172,144,63,1.37,888.0,Strength,34.1,1.6,3,1,25.23
363
+ 51,Female,78.1,1.51,193,134,74,0.92,555.0,Strength,31.1,2.6,3,1,34.25
364
+ 19,Female,50.6,1.68,193,145,64,1.21,877.0,Yoga,30.6,2.1,3,2,17.93
365
+ 49,Male,70.2,1.89,194,127,51,0.7,440.0,Yoga,29.6,2.6,3,1,19.65
366
+ 40,Female,62.6,1.53,197,143,73,1.93,1380.0,Cardio,18.1,2.7,5,3,26.74
367
+ 39,Female,60.6,1.65,162,167,63,0.92,768.0,HIIT,27.6,1.7,3,1,22.26
368
+ 42,Male,76.4,1.97,165,157,65,1.14,886.0,HIIT,22.9,2.6,3,2,19.69
369
+ 39,Female,63.3,1.71,178,125,56,1.88,1175.0,Strength,18.5,2.7,4,3,21.65
370
+ 39,Female,68.6,1.64,162,154,53,1.33,1024.0,Cardio,32.4,1.5,3,2,25.51
371
+ 59,Male,123.3,1.88,177,161,67,1.3,1036.0,HIIT,23.0,2.6,4,2,34.89
372
+ 23,Male,107.0,1.94,198,120,73,1.35,891.0,HIIT,23.5,2.9,2,1,28.43
373
+ 32,Male,68.3,1.92,168,165,54,1.42,1289.0,Strength,29.9,3.5,2,1,18.53
374
+ 54,Female,47.8,1.6,171,155,55,1.19,830.0,Cardio,26.0,2.3,4,2,18.67
375
+ 50,Female,58.4,1.79,164,131,56,1.6,943.0,HIIT,17.0,2.7,4,3,18.23
376
+ 25,Female,74.3,1.71,162,157,64,1.43,1123.0,Yoga,25.6,1.6,3,2,25.41
377
+ 22,Male,106.8,1.82,170,130,50,1.0,715.0,Yoga,28.2,2.3,4,2,32.24
378
+ 56,Male,125.5,1.8,189,131,73,1.26,817.0,Strength,20.9,2.7,4,2,38.73
379
+ 21,Female,55.2,1.55,163,161,53,1.37,1103.0,Strength,31.7,1.7,4,2,22.98
380
+ 23,Female,71.4,1.72,164,169,74,1.25,1056.0,Strength,25.6,1.5,2,1,24.13
381
+ 49,Male,77.7,1.61,160,158,50,1.03,806.0,Strength,26.7,3.4,3,2,29.98
382
+ 47,Male,88.4,1.6,186,126,60,1.86,1160.0,HIIT,14.2,3.5,5,3,34.53
383
+ 52,Male,104.8,1.99,187,130,67,0.93,598.0,Cardio,24.0,2.0,2,1,26.46
384
+ 57,Male,82.2,1.69,188,155,63,1.15,882.0,Strength,25.2,3.4,4,2,28.78
385
+ 33,Female,68.2,1.75,177,150,71,0.85,638.0,Strength,29.0,1.7,2,1,22.27
386
+ 30,Male,91.4,1.99,171,152,60,1.37,1145.0,HIIT,23.0,3.7,3,2,23.08
387
+ 59,Female,42.1,1.65,172,132,59,1.22,725.0,Strength,33.0,2.2,2,1,15.46
388
+ 47,Female,68.7,1.76,161,137,66,1.37,845.0,Strength,27.7,2.4,3,2,22.18
389
+ 36,Female,47.2,1.74,196,160,53,1.5,1200.0,Cardio,32.2,1.6,4,2,15.59
390
+ 34,Male,92.0,1.76,175,143,73,0.73,574.0,Yoga,22.1,3.5,3,1,29.7
391
+ 36,Male,56.2,1.95,183,128,64,1.09,767.0,Strength,22.5,3.4,4,2,14.78
392
+ 45,Male,58.4,1.72,194,150,65,1.31,973.0,HIIT,23.4,3.1,4,2,19.74
393
+ 43,Male,82.9,1.95,181,160,70,1.9,1505.0,Cardio,12.9,3.5,5,3,21.8
394
+ 54,Female,66.9,1.74,195,129,62,1.24,720.0,HIIT,29.5,2.1,2,1,22.1
395
+ 43,Male,66.3,1.85,170,121,58,1.18,707.0,Cardio,27.5,3.2,2,1,19.37
396
+ 40,Male,93.6,1.93,188,157,60,1.38,1192.0,Cardio,22.1,2.0,3,1,25.13
397
+ 26,Female,64.1,1.5,194,134,60,1.93,1293.0,Strength,15.1,2.7,5,3,28.49
398
+ 29,Male,86.7,1.62,174,122,55,1.52,1020.0,Strength,13.9,3.5,4,3,33.04
399
+ 18,Female,62.0,1.59,190,162,50,1.23,996.0,Strength,33.2,2.2,4,2,24.52
400
+ 18,Female,58.1,1.61,175,150,71,1.9,1425.0,Yoga,15.3,2.7,4,3,22.41
401
+ 51,Female,64.9,1.6,169,125,55,1.49,838.0,Yoga,31.1,2.5,4,2,25.35
402
+ 49,Female,69.3,1.62,191,122,62,1.14,626.0,HIIT,28.8,1.9,4,2,26.41
403
+ 42,Female,42.7,1.74,161,130,71,1.04,608.0,Strength,32.9,1.6,3,1,14.1
404
+ 57,Female,51.4,1.63,183,134,73,1.2,724.0,Yoga,33.7,2.0,4,2,19.35
405
+ 18,Female,67.4,1.6,182,164,71,0.6,492.0,Strength,33.5,2.4,3,1,26.33
406
+ 33,Female,55.6,1.61,161,147,54,1.77,1301.0,Yoga,18.9,2.7,4,3,21.45
407
+ 56,Male,125.3,1.86,197,129,64,1.0,639.0,Yoga,22.7,2.2,3,2,36.22
408
+ 22,Male,102.1,1.85,190,157,67,1.48,1278.0,Cardio,28.1,2.4,4,2,29.83
409
+ 39,Male,61.9,1.77,199,166,69,1.32,1205.0,Strength,25.3,2.3,3,1,19.76
410
+ 46,Male,108.8,1.64,185,169,63,1.4,1171.0,Strength,20.5,3.4,3,1,40.45
411
+ 20,Female,51.1,1.58,188,169,64,0.5,422.0,Yoga,29.6,1.6,2,1,20.47
412
+ 29,Male,81.7,1.99,162,126,54,1.45,1005.0,Strength,29.4,3.2,2,1,20.63
413
+ 43,Female,42.7,1.66,173,134,53,0.73,440.0,Yoga,33.9,1.9,2,1,15.5
414
+ 33,Male,81.8,1.99,184,137,51,1.59,1198.0,Strength,10.5,3.5,4,3,20.66
415
+ 54,Male,54.6,1.76,160,137,56,1.28,868.0,Cardio,27.4,3.3,4,2,17.63
416
+ 39,Male,107.7,1.88,162,160,59,0.72,634.0,Strength,28.1,3.6,2,1,30.47
417
+ 46,Female,56.9,1.6,185,143,65,0.88,566.0,Cardio,27.7,1.6,3,1,22.23
418
+ 31,Male,78.8,1.71,177,121,59,1.49,992.0,HIIT,24.7,2.5,4,2,26.95
419
+ 45,Female,48.2,1.64,168,159,67,1.25,894.0,Strength,32.1,2.5,4,2,17.92
420
+ 22,Female,50.7,1.59,197,139,66,1.27,883.0,Strength,29.4,1.8,3,2,20.05
421
+ 47,Male,86.6,1.99,182,153,70,1.98,1500.0,Strength,10.6,3.5,4,3,21.87
422
+ 22,Male,96.3,1.63,180,162,62,1.35,1203.0,Cardio,27.1,2.4,4,2,36.25
423
+ 29,Male,80.8,1.98,160,145,50,1.65,1316.0,Strength,14.6,3.5,5,3,20.61
424
+ 33,Female,58.0,1.53,180,126,50,1.84,1159.0,Strength,18.3,2.7,5,3,24.78
425
+ 43,Male,95.9,1.85,186,157,64,1.28,995.0,Yoga,27.7,3.4,2,1,28.02
426
+ 43,Female,61.5,1.58,165,149,50,1.86,1247.0,HIIT,16.8,2.7,5,3,24.64
427
+ 38,Female,40.6,1.79,195,161,55,0.62,499.0,Cardio,26.8,2.7,2,1,12.67
428
+ 56,Male,82.5,1.87,187,124,74,1.51,927.0,Yoga,13.2,3.5,5,3,23.59
429
+ 53,Male,105.1,1.84,176,130,62,0.69,444.0,Cardio,23.3,2.9,3,1,31.04
430
+ 50,Female,58.1,1.58,199,120,50,1.93,1042.0,Yoga,19.3,2.7,5,3,23.27
431
+ 47,Female,61.0,1.76,162,153,54,1.54,1060.0,HIIT,15.6,2.7,5,3,19.69
432
+ 54,Female,64.5,1.53,171,120,58,1.74,940.0,Yoga,17.2,2.7,4,3,27.55
433
+ 40,Male,58.2,1.98,198,138,74,1.43,1085.0,Cardio,24.0,2.5,3,2,14.85
434
+ 27,Female,69.5,1.76,171,121,66,0.94,569.0,Strength,34.4,2.0,3,1,22.44
435
+ 22,Male,62.2,1.84,161,140,65,0.51,393.0,Strength,21.5,2.3,3,1,18.37
436
+ 53,Female,68.0,1.7,181,139,57,1.06,663.0,HIIT,25.1,2.4,4,2,23.53
437
+ 51,Female,56.3,1.5,182,142,66,1.43,914.0,Cardio,27.4,2.4,3,1,25.02
438
+ 48,Male,94.5,1.7,189,140,64,1.01,700.0,Cardio,28.2,3.5,3,2,32.7
439
+ 27,Female,58.0,1.79,164,143,73,1.39,994.0,Cardio,27.1,1.5,2,1,18.1
440
+ 36,Male,84.0,1.94,168,123,50,1.8,1218.0,HIIT,11.2,3.5,5,3,22.32
441
+ 49,Male,61.0,1.87,180,131,61,1.14,739.0,Strength,21.3,3.0,4,2,17.44
442
+ 18,Female,64.8,1.53,170,141,54,1.98,1396.0,Yoga,18.6,2.7,5,3,27.68
443
+ 22,Male,45.7,1.77,164,139,73,1.04,795.0,HIIT,20.7,2.4,3,1,14.59
444
+ 21,Male,80.9,1.9,194,137,55,1.8,1356.0,Yoga,11.7,3.5,4,3,22.41
445
+ 33,Female,64.1,1.63,186,120,74,1.58,948.0,Strength,16.4,2.7,5,3,24.13
446
+ 41,Male,67.0,1.77,161,149,50,1.22,900.0,HIIT,25.6,2.6,3,2,21.39
447
+ 33,Male,106.5,1.6,183,152,74,1.4,1170.0,Strength,27.3,3.3,4,2,41.6
448
+ 19,Male,95.1,1.85,190,143,50,1.21,952.0,Yoga,25.3,2.3,4,2,27.79
449
+ 45,Female,65.5,1.57,192,133,59,0.66,395.0,Cardio,34.3,2.3,2,1,26.57
450
+ 49,Male,105.7,1.64,198,155,59,1.2,921.0,Cardio,29.5,3.1,3,2,39.3
451
+ 44,Female,48.0,1.76,189,124,52,0.88,491.0,Yoga,28.6,2.6,2,1,15.5
452
+ 37,Female,69.5,1.5,196,130,66,0.69,448.0,Cardio,32.8,2.4,2,1,30.89
453
+ 41,Male,66.1,1.69,187,143,68,0.77,545.0,Yoga,27.4,3.4,2,1,23.14
454
+ 29,Male,68.0,1.7,190,150,60,0.76,627.0,HIIT,28.9,2.9,2,1,23.53
455
+ 52,Male,50.3,1.78,170,132,67,0.85,555.0,HIIT,24.5,2.3,2,1,15.88
456
+ 50,Female,69.3,1.68,182,135,51,1.2,729.0,HIIT,30.3,2.0,2,1,24.55
457
+ 50,Male,86.7,1.63,161,143,58,1.7,1203.0,Cardio,12.1,3.5,4,3,32.63
458
+ 54,Male,125.9,1.94,199,132,73,1.35,882.0,Strength,28.5,2.9,3,2,33.45
459
+ 29,Male,88.1,1.93,186,143,66,1.88,1479.0,Cardio,11.1,3.5,5,3,23.65
460
+ 20,Male,124.3,1.82,194,145,63,1.25,997.0,Cardio,22.4,3.2,3,2,37.53
461
+ 18,Male,62.0,1.85,161,121,53,0.88,586.0,Strength,23.7,3.0,3,1,18.12
462
+ 50,Female,69.7,1.72,198,135,66,1.24,753.0,Strength,27.3,2.0,4,2,23.56
463
+ 57,Female,60.9,1.52,196,157,66,1.31,926.0,Strength,30.6,1.8,3,2,26.36
464
+ 27,Male,76.5,1.97,180,165,61,1.13,1025.0,Strength,21.3,2.3,2,1,19.71
465
+ 46,Male,94.7,1.82,164,120,69,1.47,873.0,Cardio,23.2,3.2,3,2,28.59
466
+ 30,Male,67.9,1.75,180,168,67,1.25,1155.0,Yoga,29.1,3.1,2,1,22.17
467
+ 29,Male,121.1,1.87,188,130,52,1.31,937.0,HIIT,24.1,3.2,4,2,34.63
468
+ 48,Female,71.5,1.64,179,154,60,1.46,1012.0,Yoga,32.5,1.9,4,2,26.58
469
+ 19,Male,98.6,1.7,197,162,74,0.83,740.0,Cardio,21.1,2.4,2,1,34.12
470
+ 52,Female,68.2,1.63,179,148,67,1.17,779.0,Strength,27.5,2.4,3,1,25.67
471
+ 40,Female,57.7,1.69,184,156,53,1.18,920.0,HIIT,33.1,2.4,4,2,20.2
472
+ 34,Male,124.6,1.63,161,136,66,1.41,1055.0,HIIT,27.6,2.8,3,2,46.9
473
+ 43,Female,73.0,1.59,191,158,67,1.31,931.0,Yoga,28.9,2.2,3,1,28.88
474
+ 25,Female,59.4,1.51,185,161,54,1.62,1304.0,Cardio,19.8,2.7,5,3,26.05
475
+ 46,Female,52.0,1.65,165,147,63,0.7,463.0,Cardio,34.1,1.9,2,1,19.1
476
+ 43,Female,42.2,1.65,162,148,59,1.33,886.0,Cardio,34.6,2.3,3,2,15.5
477
+ 27,Male,89.3,1.64,192,162,64,1.82,1622.0,HIIT,12.1,3.5,4,3,33.2
478
+ 43,Male,110.0,1.76,160,122,50,1.09,658.0,Yoga,22.0,3.4,3,1,35.51
479
+ 51,Female,66.2,1.58,164,129,65,0.86,499.0,HIIT,31.3,2.3,3,1,26.52
480
+ 58,Male,58.6,1.66,172,161,60,1.21,964.0,HIIT,26.8,2.9,2,1,21.27
481
+ 24,Male,51.0,1.67,178,133,72,0.97,710.0,Strength,21.3,2.8,3,1,18.29
482
+ 21,Male,101.5,1.95,171,131,69,0.97,699.0,Yoga,27.9,3.1,3,1,26.69
483
+ 28,Male,114.2,1.87,184,166,55,1.05,959.0,Strength,20.2,3.2,3,2,32.66
484
+ 46,Male,54.4,1.72,194,161,73,0.91,725.0,Cardio,24.8,2.9,2,1,18.39
485
+ 53,Female,52.4,1.57,171,149,71,1.34,898.0,HIIT,28.3,2.2,3,2,21.26
486
+ 42,Male,85.2,1.81,189,151,65,1.54,1151.0,Yoga,13.7,3.5,5,3,26.01
487
+ 38,Male,83.6,1.74,164,151,51,1.66,1379.0,Cardio,11.6,3.5,5,3,27.61
488
+ 53,Male,115.4,1.92,193,161,50,1.36,1084.0,Yoga,28.3,2.2,4,2,31.3
489
+ 27,Male,71.2,1.97,181,151,73,0.74,615.0,HIIT,25.9,3.6,3,1,18.35
490
+ 54,Female,78.1,1.6,198,145,73,1.1,718.0,Yoga,32.9,2.4,4,2,30.51
491
+ 26,Female,54.2,1.65,172,120,58,1.07,642.0,Cardio,34.9,1.9,4,2,19.91
492
+ 41,Female,77.6,1.76,162,161,71,1.27,920.0,Strength,31.8,2.2,4,2,25.05
493
+ 52,Female,44.1,1.62,179,121,61,1.41,768.0,HIIT,34.8,1.6,3,1,16.8
494
+ 52,Male,85.5,1.8,190,136,66,1.7,1144.0,Strength,10.1,3.5,5,3,26.39
495
+ 53,Female,47.8,1.76,164,149,74,1.06,711.0,HIIT,28.4,1.5,4,2,15.43
496
+ 35,Male,102.5,1.94,183,158,64,0.84,730.0,Cardio,21.1,2.4,2,1,27.23
497
+ 56,Male,118.0,1.9,199,126,68,0.66,412.0,HIIT,22.6,3.2,2,1,32.69
498
+ 49,Male,82.3,1.84,192,146,71,1.29,932.0,Strength,28.4,3.4,4,2,24.31
499
+ 41,Male,81.6,1.87,167,128,59,1.87,1185.0,HIIT,10.2,3.5,5,3,23.33
500
+ 40,Male,60.2,1.88,183,141,61,1.22,946.0,Cardio,25.2,3.0,3,2,17.03
501
+ 49,Female,49.2,1.54,179,153,63,1.28,881.0,HIIT,30.7,2.1,3,2,20.75
502
+ 54,Female,46.6,1.5,175,165,58,1.38,1025.0,Strength,30.6,2.0,2,1,20.71
503
+ 29,Female,68.7,1.72,171,168,62,1.08,907.0,Cardio,29.8,1.7,4,2,23.22
504
+ 30,Female,60.6,1.55,172,120,52,1.3,780.0,Strength,32.9,1.6,3,2,25.22
505
+ 40,Male,52.1,1.61,198,128,70,0.87,612.0,HIIT,21.3,3.3,2,1,20.1
506
+ 42,Female,46.6,1.77,184,139,63,0.61,382.0,Yoga,28.1,2.6,2,1,14.87
507
+ 52,Male,65.5,1.74,191,138,70,1.48,1011.0,Strength,26.2,2.8,4,2,21.63
508
+ 58,Female,44.2,1.57,183,155,59,1.08,753.0,HIIT,31.9,2.3,3,1,17.93
509
+ 47,Male,89.1,1.84,168,159,65,1.44,1133.0,Yoga,24.0,3.6,3,2,26.32
510
+ 34,Male,65.9,1.62,199,164,56,0.81,731.0,Yoga,28.8,2.2,2,1,25.11
511
+ 37,Female,55.6,1.57,182,123,53,0.97,597.0,Cardio,29.2,2.4,2,1,22.56
512
+ 42,Male,63.7,1.98,172,128,69,1.37,868.0,Yoga,24.0,3.0,2,1,16.25
513
+ 39,Male,86.2,1.82,191,160,72,1.96,1725.0,Strength,10.2,3.5,5,3,26.02
514
+ 30,Female,59.2,1.63,174,141,74,1.85,1304.0,Strength,17.8,2.7,4,3,22.28
515
+ 36,Male,85.4,1.88,195,137,60,1.98,1492.0,Yoga,13.5,3.5,5,3,24.16
516
+ 53,Female,68.1,1.55,164,131,65,1.41,831.0,HIIT,26.1,2.2,4,2,28.35
517
+ 29,Female,60.0,1.62,181,161,69,0.85,684.0,Strength,28.1,1.9,2,1,22.86
518
+ 58,Female,74.8,1.69,175,162,53,1.28,933.0,Strength,32.8,2.3,4,2,26.19
519
+ 36,Male,90.3,1.65,169,158,71,1.38,1199.0,Cardio,23.7,3.4,4,2,33.17
520
+ 29,Male,86.1,1.65,183,128,71,1.66,1169.0,HIIT,11.2,3.5,4,3,31.63
521
+ 26,Male,73.7,1.66,177,125,72,0.93,639.0,Yoga,26.7,2.2,2,1,26.75
522
+ 24,Female,67.7,1.56,177,138,66,1.42,980.0,HIIT,27.0,2.1,3,2,27.82
523
+ 45,Male,78.3,1.96,166,167,62,1.29,1066.0,Cardio,29.0,2.2,3,1,20.38
524
+ 31,Female,48.2,1.65,163,166,60,1.1,913.0,Cardio,26.1,2.5,2,1,17.7
525
+ 48,Female,56.8,1.51,185,126,52,1.37,777.0,HIIT,32.1,2.1,4,2,24.91
526
+ 36,Male,112.4,1.63,164,135,58,1.02,757.0,Cardio,25.0,3.4,4,2,42.3
527
+ 33,Female,59.0,1.67,175,124,55,0.9,558.0,Cardio,33.7,1.9,3,1,21.16
528
+ 22,Male,98.4,1.88,194,135,71,0.52,386.0,Cardio,21.3,2.2,2,1,27.84
529
+ 52,Male,66.5,1.6,185,120,70,1.34,796.0,HIIT,26.8,2.1,4,2,25.98
530
+ 29,Male,106.5,1.81,177,156,60,1.29,1107.0,Cardio,25.7,2.5,4,2,32.51
531
+ 42,Male,88.4,1.93,188,158,65,1.68,1314.0,Yoga,12.4,3.5,4,3,23.73
532
+ 38,Male,88.4,1.79,182,138,68,1.74,1321.0,Yoga,12.5,3.5,5,3,27.59
533
+ 53,Female,53.3,1.74,173,156,54,1.37,962.0,Strength,32.2,1.8,3,2,17.6
534
+ 40,Female,58.1,1.56,174,136,63,0.61,415.0,Yoga,34.4,2.2,2,1,23.87
535
+ 33,Female,74.2,1.76,192,145,66,1.15,834.0,Strength,25.9,1.5,4,2,23.95
536
+ 56,Male,84.6,1.63,184,141,52,1.01,705.0,HIIT,20.2,2.9,4,2,31.84
537
+ 59,Male,78.0,1.92,180,127,53,0.72,453.0,Cardio,28.1,2.7,3,1,21.16
538
+ 56,Male,89.0,1.68,176,152,65,1.77,1332.0,Yoga,10.5,3.5,5,3,31.53
539
+ 31,Female,42.7,1.76,182,121,65,1.46,883.0,Strength,34.9,2.2,3,1,13.78
540
+ 48,Male,83.9,1.82,176,149,70,1.9,1401.0,HIIT,13.1,3.5,5,3,25.33
541
+ 22,Female,78.7,1.52,173,166,74,1.45,1204.0,Strength,31.5,2.3,3,2,34.06
542
+ 52,Female,65.9,1.52,188,139,53,1.27,794.0,Cardio,27.0,2.3,4,2,28.52
543
+ 40,Male,76.9,1.92,179,137,68,1.13,851.0,Yoga,22.4,3.7,4,2,20.86
544
+ 46,Male,84.3,2.0,189,162,66,1.83,1467.0,HIIT,13.3,3.5,5,3,21.07
545
+ 28,Female,62.4,1.6,178,129,62,1.1,710.0,Strength,34.1,1.7,3,2,24.37
546
+ 35,Male,63.7,1.74,198,143,71,1.03,810.0,HIIT,29.8,2.7,4,2,21.04
547
+ 29,Female,54.9,1.52,172,123,72,1.48,910.0,Strength,27.0,2.0,3,1,23.76
548
+ 26,Male,76.4,1.79,177,156,73,1.17,1004.0,Strength,21.3,2.7,3,2,23.84
549
+ 27,Male,106.4,1.86,182,123,50,1.34,907.0,Cardio,20.6,3.1,2,1,30.76
550
+ 34,Female,68.4,1.5,192,132,61,1.37,904.0,Cardio,33.7,2.1,4,2,30.4
551
+ 55,Male,63.5,1.86,198,144,53,1.36,969.0,Strength,22.9,2.9,4,2,18.35
552
+ 24,Female,59.4,1.5,199,132,60,1.25,825.0,Yoga,25.0,2.0,3,2,26.4
553
+ 30,Male,113.4,1.91,177,137,54,1.27,957.0,HIIT,22.2,3.7,3,1,31.08
554
+ 57,Female,61.9,1.52,168,143,51,0.92,592.0,HIIT,28.4,2.6,3,1,26.79
555
+ 59,Female,70.7,1.68,192,121,66,1.17,637.0,Cardio,34.9,1.9,3,2,25.05
556
+ 26,Male,111.5,1.9,191,167,57,1.02,937.0,Yoga,25.2,2.2,2,1,30.89
557
+ 44,Female,72.1,1.66,176,152,55,1.4,958.0,Strength,27.0,2.5,2,1,26.16
558
+ 19,Male,56.9,1.87,178,138,70,0.61,463.0,Cardio,23.3,3.7,3,1,16.27
559
+ 22,Male,86.2,1.9,186,128,58,1.91,1345.0,Strength,11.7,3.5,5,3,23.88
560
+ 46,Male,59.4,1.68,165,147,62,1.16,844.0,Strength,20.2,2.5,4,2,21.05
561
+ 54,Female,75.6,1.72,194,154,60,0.97,672.0,Cardio,26.4,1.9,3,1,25.55
562
+ 55,Female,76.3,1.73,196,158,65,1.08,768.0,Yoga,32.0,2.6,3,1,25.49
563
+ 36,Male,95.8,1.86,193,129,65,1.37,972.0,HIIT,21.2,3.2,3,1,27.69
564
+ 25,Male,120.6,1.83,179,120,51,1.04,686.0,Cardio,22.3,2.5,3,2,36.01
565
+ 18,Female,65.3,1.55,184,161,59,1.42,1143.0,Yoga,28.5,2.2,3,2,27.18
566
+ 39,Male,85.3,1.89,163,140,61,0.77,593.0,Strength,27.6,3.6,2,1,23.88
567
+ 34,Male,68.0,1.68,169,128,57,0.67,472.0,Cardio,25.8,3.4,2,1,24.09
568
+ 24,Female,52.6,1.57,169,166,60,1.29,1071.0,HIIT,31.9,2.4,2,1,21.34
569
+ 42,Male,63.3,1.77,183,134,59,1.32,876.0,HIIT,25.7,3.3,3,2,20.2
570
+ 21,Female,76.3,1.65,180,154,62,1.14,878.0,Strength,31.8,1.7,3,2,28.03
571
+ 53,Male,61.0,1.63,170,124,74,0.54,331.0,Cardio,20.0,3.4,3,1,22.96
572
+ 23,Female,67.8,1.61,186,160,66,1.34,1072.0,HIIT,34.3,1.8,2,1,26.16
573
+ 48,Male,114.9,1.86,175,141,56,1.36,949.0,Cardio,21.1,3.6,3,1,33.21
574
+ 36,Male,88.0,1.71,185,160,73,1.87,1646.0,HIIT,12.0,3.5,5,3,30.09
575
+ 56,Female,67.7,1.58,189,142,52,1.45,927.0,Strength,32.7,1.9,2,1,27.12
576
+ 44,Male,124.8,1.85,175,126,69,1.35,842.0,Strength,24.4,3.5,4,2,36.46
577
+ 27,Female,53.0,1.58,166,142,62,1.26,895.0,Cardio,34.5,1.8,4,2,21.23
578
+ 43,Male,61.2,1.88,175,163,68,1.03,831.0,Yoga,24.7,2.9,3,1,17.32
579
+ 36,Female,48.7,1.68,194,144,56,1.23,886.0,Yoga,33.7,1.6,3,1,17.25
580
+ 56,Female,50.6,1.7,175,146,58,1.29,848.0,Strength,33.1,2.3,2,1,17.51
581
+ 20,Female,72.6,1.73,199,160,68,1.27,1016.0,HIIT,34.8,2.5,3,2,24.26
582
+ 30,Female,70.4,1.56,171,125,62,1.03,644.0,Yoga,34.3,2.4,4,2,28.93
583
+ 45,Male,52.5,1.88,194,153,71,1.08,818.0,Strength,29.0,2.9,4,2,14.85
584
+ 37,Male,76.3,1.77,180,128,57,1.36,957.0,HIIT,27.3,2.1,4,2,24.35
585
+ 45,Female,41.2,1.58,195,168,71,1.47,1111.0,HIIT,28.7,2.6,2,1,16.5
586
+ 25,Female,55.3,1.76,176,152,67,1.56,1186.0,Yoga,15.5,2.7,4,3,17.85
587
+ 58,Female,49.7,1.67,191,125,72,1.38,776.0,Strength,31.9,2.3,4,2,17.82
588
+ 56,Male,48.3,1.87,165,156,51,0.68,525.0,HIIT,29.8,3.3,3,1,13.81
589
+ 18,Male,83.2,1.96,183,150,67,1.83,1510.0,HIIT,13.6,3.5,4,3,21.66
590
+ 20,Male,120.5,1.73,186,153,67,1.01,850.0,Cardio,29.3,3.4,3,2,40.26
591
+ 30,Male,121.6,2.0,179,160,60,1.24,1091.0,Cardio,28.0,3.3,4,2,30.4
592
+ 45,Female,73.0,1.75,184,148,50,1.14,759.0,Yoga,26.6,2.0,4,2,23.84
593
+ 42,Female,57.5,1.67,161,133,63,1.76,1053.0,Cardio,16.2,2.7,5,3,20.62
594
+ 50,Female,42.7,1.53,168,155,65,1.41,983.0,Strength,28.4,2.4,4,2,18.24
595
+ 55,Male,129.9,1.73,187,155,60,0.69,529.0,Yoga,21.7,3.1,3,1,43.4
596
+ 23,Male,108.6,1.92,197,134,50,0.89,656.0,Yoga,25.8,3.5,2,1,29.46
597
+ 49,Male,88.6,2.0,162,127,56,1.83,1150.0,Cardio,14.9,3.5,4,3,22.15
598
+ 38,Female,49.7,1.51,179,145,65,1.25,906.0,HIIT,32.6,2.5,3,1,21.8
599
+ 33,Female,56.4,1.54,165,155,63,1.06,822.0,Strength,29.2,1.5,3,1,23.78
600
+ 38,Male,46.9,1.74,198,167,64,1.03,946.0,Strength,20.0,2.6,4,2,15.49
601
+ 28,Female,71.3,1.67,192,140,63,1.46,1022.0,Strength,28.1,1.5,4,2,25.57
602
+ 54,Male,71.6,1.86,160,147,70,1.14,830.0,Yoga,25.3,2.2,3,2,20.7
603
+ 53,Male,82.3,1.61,196,123,60,1.87,1139.0,Strength,11.6,3.5,5,3,31.75
604
+ 52,Female,70.6,1.69,165,135,65,1.36,826.0,HIIT,26.1,2.2,3,1,24.72
605
+ 36,Male,109.8,1.62,193,141,68,0.84,651.0,HIIT,24.4,3.5,3,1,41.84
606
+ 37,Female,73.5,1.69,174,131,66,0.54,354.0,Cardio,27.5,1.6,2,1,25.73
607
+ 35,Male,85.6,1.85,185,135,55,1.78,1322.0,Strength,14.5,3.5,5,3,25.01
608
+ 58,Female,74.6,1.68,173,159,60,1.03,737.0,Yoga,26.0,2.0,4,2,26.43
609
+ 31,Female,63.2,1.8,166,157,66,0.59,463.0,Cardio,25.5,2.6,2,1,19.51
610
+ 32,Female,62.6,1.63,190,161,58,1.67,1344.0,HIIT,15.0,2.7,5,3,23.56
611
+ 48,Male,87.1,1.76,183,156,67,1.81,1398.0,Strength,11.6,3.5,5,3,28.12
612
+ 18,Male,82.3,1.84,190,148,66,1.73,1408.0,HIIT,13.3,3.5,5,3,24.31
613
+ 20,Female,64.3,1.78,188,137,61,1.71,1171.0,Cardio,18.7,2.7,4,3,20.29
614
+ 33,Female,53.7,1.66,191,129,72,1.25,806.0,HIIT,29.5,2.5,3,1,19.49
615
+ 40,Male,63.0,2.0,176,161,71,1.42,1257.0,Strength,26.8,2.9,4,2,15.75
616
+ 28,Male,128.4,1.86,173,158,71,1.06,921.0,Strength,23.6,3.3,4,2,37.11
617
+ 29,Male,88.0,1.89,199,137,54,1.75,1319.0,Cardio,13.3,3.5,5,3,24.64
618
+ 27,Female,63.7,1.52,195,120,60,1.19,714.0,Strength,25.4,2.1,4,2,27.57
619
+ 49,Male,83.7,1.87,183,158,53,1.29,1009.0,HIIT,23.9,2.3,4,2,23.94
620
+ 33,Male,102.6,1.75,186,140,53,1.4,1078.0,HIIT,27.9,2.2,3,2,33.5
621
+ 25,Female,77.7,1.55,184,120,52,0.55,330.0,Yoga,33.0,1.7,2,1,32.34
622
+ 55,Male,87.5,1.88,191,134,73,1.19,789.0,Yoga,27.2,2.6,4,2,24.76
623
+ 29,Male,87.0,1.86,177,123,72,1.52,1028.0,Yoga,11.0,3.5,4,3,25.15
624
+ 41,Male,82.8,1.66,177,139,74,1.97,1355.0,HIIT,11.2,3.5,5,3,30.05
625
+ 45,Female,65.4,1.68,196,129,66,0.76,441.0,HIIT,35.0,2.6,3,1,23.17
626
+ 25,Female,47.2,1.71,185,142,56,0.89,632.0,Cardio,26.0,2.5,2,1,16.14
627
+ 45,Female,58.2,1.7,168,160,53,0.95,684.0,Yoga,26.8,2.0,3,1,20.14
628
+ 53,Female,73.5,1.55,194,153,72,1.17,806.0,HIIT,26.3,2.1,4,2,30.59
629
+ 43,Female,55.2,1.73,167,165,62,1.67,1240.0,Cardio,16.6,2.7,5,3,18.44
630
+ 25,Female,64.4,1.71,179,167,61,1.12,935.0,HIIT,27.1,1.8,3,1,22.02
631
+ 45,Female,73.5,1.74,181,152,50,1.18,807.0,Cardio,30.0,2.3,4,2,24.28
632
+ 45,Male,89.6,1.81,178,153,70,1.7,1287.0,Yoga,12.4,3.5,5,3,27.35
633
+ 54,Male,86.5,1.76,189,158,68,1.48,1158.0,Yoga,29.0,3.4,3,2,27.92
634
+ 58,Female,46.1,1.67,187,129,70,1.28,743.0,Yoga,25.3,1.8,4,2,16.53
635
+ 53,Male,68.5,1.97,194,139,69,1.3,894.0,HIIT,23.2,2.1,3,2,17.65
636
+ 44,Male,94.6,1.84,170,120,67,1.26,748.0,HIIT,26.0,3.1,4,2,27.94
637
+ 34,Female,54.2,1.52,190,132,60,1.13,746.0,Cardio,31.0,2.2,3,1,23.46
638
+ 26,Male,47.7,1.77,198,120,69,1.15,759.0,Strength,24.8,2.7,3,2,15.23
639
+ 50,Male,52.2,1.84,195,124,52,1.38,847.0,Strength,28.2,3.1,4,2,15.42
640
+ 37,Male,88.8,1.95,189,135,66,1.58,1173.0,Yoga,10.3,3.5,5,3,23.35
641
+ 30,Male,101.0,1.68,182,134,61,1.46,1076.0,Strength,28.2,2.9,4,2,35.79
642
+ 45,Male,118.4,1.95,178,168,59,1.06,881.0,Yoga,24.9,2.4,3,2,31.14
643
+ 46,Female,47.9,1.72,171,147,57,1.41,933.0,Cardio,26.3,2.0,3,1,16.19
644
+ 30,Female,51.5,1.74,174,150,64,1.08,810.0,Strength,33.9,2.0,3,2,17.01
645
+ 52,Female,79.9,1.51,190,142,54,0.75,479.0,Strength,31.5,2.6,3,1,35.04
646
+ 23,Male,121.3,1.85,196,167,53,0.72,661.0,Yoga,21.6,3.6,2,1,35.44
647
+ 35,Female,78.9,1.64,196,164,70,1.28,1050.0,Cardio,25.3,2.6,4,2,29.34
648
+ 22,Male,88.5,1.62,174,162,69,1.88,1675.0,Strength,10.7,3.5,5,3,33.72
649
+ 42,Male,73.5,1.63,188,136,68,0.52,350.0,Strength,26.1,3.2,3,1,27.66
650
+ 19,Male,127.9,1.93,185,168,70,1.27,1173.0,Strength,21.8,3.0,4,2,34.34
651
+ 27,Male,88.5,1.98,161,153,53,1.8,1515.0,Cardio,11.1,3.5,4,3,22.57
652
+ 47,Female,43.4,1.62,179,132,64,0.51,303.0,Cardio,25.3,2.3,3,1,16.54
653
+ 22,Female,42.8,1.56,174,133,66,1.47,978.0,Strength,32.2,2.6,3,2,17.59
654
+ 50,Male,64.5,1.79,163,130,61,1.17,753.0,Yoga,28.1,2.4,4,2,20.13
655
+ 18,Female,50.7,1.53,181,147,52,1.29,948.0,Yoga,33.0,2.1,3,2,21.66
656
+ 35,Male,59.2,1.66,197,161,59,1.3,1151.0,Strength,21.3,3.2,3,1,21.48
657
+ 49,Female,78.9,1.73,182,151,64,1.38,938.0,Cardio,34.0,2.3,2,1,26.36
658
+ 28,Female,78.7,1.63,185,154,59,1.1,847.0,Strength,31.7,1.8,3,2,29.62
659
+ 38,Male,68.7,1.92,170,150,73,1.31,1081.0,Cardio,29.0,3.0,4,2,18.64
660
+ 43,Female,53.1,1.59,187,136,72,0.82,502.0,Strength,29.5,2.5,2,1,21.0
661
+ 42,Male,64.8,1.65,161,166,67,1.1,904.0,Cardio,24.4,2.8,3,2,23.8
662
+ 39,Female,50.3,1.61,167,128,50,1.17,749.0,HIIT,32.8,2.5,2,1,19.41
663
+ 44,Male,102.3,1.63,188,129,52,1.34,856.0,Yoga,20.9,2.6,4,2,38.5
664
+ 30,Male,62.9,1.92,170,127,70,1.13,789.0,HIIT,25.2,3.6,2,1,17.06
665
+ 50,Female,56.5,1.6,196,140,61,1.88,1184.0,Yoga,19.2,2.7,5,3,22.07
666
+ 51,Female,74.6,1.55,177,132,50,0.71,422.0,Cardio,33.3,2.1,2,1,31.05
667
+ 58,Male,52.0,1.79,173,169,52,1.12,937.0,HIIT,29.6,3.0,3,1,16.23
668
+ 52,Female,52.1,1.67,169,124,52,1.5,837.0,Yoga,32.0,1.5,2,1,18.68
669
+ 18,Female,72.2,1.54,194,125,54,0.97,606.0,Strength,27.1,1.7,2,1,30.44
670
+ 38,Male,85.8,1.8,168,149,68,1.72,1410.0,Cardio,10.1,3.5,4,3,26.48
671
+ 23,Male,81.4,1.85,194,150,74,1.6,1320.0,Cardio,12.4,3.5,4,3,23.78
672
+ 45,Female,50.9,1.65,170,136,50,1.45,887.0,Strength,30.1,2.3,2,1,18.7
673
+ 34,Male,52.0,1.78,171,130,53,1.38,987.0,Strength,22.4,2.7,4,2,16.41
674
+ 22,Male,71.0,1.93,162,139,53,1.42,1086.0,Yoga,21.2,2.9,4,2,19.06
675
+ 48,Male,80.6,1.77,198,167,66,1.51,1248.0,Cardio,12.9,3.5,4,3,25.73
676
+ 22,Female,58.3,1.72,173,128,63,1.0,640.0,Yoga,32.6,1.6,3,2,19.71
677
+ 55,Female,63.0,1.7,187,121,67,1.32,719.0,Strength,34.9,2.5,3,1,21.8
678
+ 20,Male,111.0,1.94,170,156,50,1.02,875.0,Cardio,27.6,3.3,4,2,29.49
679
+ 40,Female,52.6,1.66,198,120,71,1.27,762.0,Strength,32.9,1.7,3,2,19.09
680
+ 54,Male,116.4,2.0,184,123,65,1.13,688.0,Yoga,26.2,3.1,3,1,29.1
681
+ 54,Female,75.6,1.61,180,155,52,1.41,983.0,Yoga,34.9,2.5,4,2,29.17
682
+ 27,Male,61.6,1.8,169,144,72,1.48,1172.0,Yoga,26.4,3.1,2,1,19.01
683
+ 27,Male,108.0,1.8,174,122,70,1.38,926.0,Cardio,28.6,2.5,4,2,33.33
684
+ 36,Female,59.3,1.75,178,128,58,0.99,634.0,Strength,34.5,2.3,3,1,19.36
685
+ 34,Male,75.7,1.94,181,141,72,1.18,915.0,Strength,29.3,2.4,4,2,20.11
686
+ 38,Female,56.3,1.6,180,142,53,1.21,859.0,Yoga,28.8,1.9,4,2,21.99
687
+ 31,Female,58.2,1.73,191,131,70,1.17,766.0,Yoga,25.8,1.8,3,2,19.45
688
+ 26,Male,55.7,1.68,182,129,54,1.13,802.0,Yoga,21.7,2.9,3,1,19.73
689
+ 18,Male,125.9,1.67,172,153,60,1.46,1229.0,Yoga,20.6,2.2,3,2,45.14
690
+ 30,Female,62.7,1.67,164,162,70,1.02,826.0,HIIT,26.1,2.6,4,2,22.48
691
+ 21,Male,86.6,1.86,163,129,58,1.37,972.0,HIIT,21.8,2.6,3,2,25.03
692
+ 18,Male,64.5,1.82,187,149,52,1.2,983.0,HIIT,23.4,2.4,3,2,19.47
693
+ 57,Male,76.6,1.86,173,141,55,1.14,796.0,Yoga,25.4,2.8,4,2,22.14
694
+ 49,Male,81.4,1.83,167,125,73,1.98,1225.0,Yoga,13.6,3.5,5,3,24.31
695
+ 51,Male,60.7,1.71,168,169,60,1.14,954.0,Strength,22.1,2.5,2,1,20.76
696
+ 45,Female,57.2,1.55,194,121,58,1.67,909.0,Cardio,18.4,2.7,5,3,23.81
697
+ 48,Female,73.0,1.59,196,149,64,1.19,798.0,Strength,32.0,2.1,3,2,28.88
698
+ 25,Male,123.8,1.99,180,121,72,1.13,752.0,HIIT,25.6,2.6,3,1,31.26
699
+ 56,Male,93.6,1.66,177,151,52,1.37,1024.0,Strength,29.0,2.2,2,1,33.97
700
+ 43,Male,76.8,1.92,192,161,50,1.24,988.0,Yoga,21.1,2.5,3,1,20.83
701
+ 51,Female,54.7,1.53,167,135,69,1.11,674.0,HIIT,26.8,2.0,4,2,23.37
702
+ 20,Male,92.3,1.94,176,131,71,1.14,821.0,HIIT,24.3,2.1,3,2,24.52
703
+ 29,Female,71.8,1.55,190,120,68,1.2,720.0,Cardio,26.3,2.4,4,2,29.89
704
+ 18,Female,66.9,1.57,193,127,63,1.07,679.0,Cardio,30.7,2.2,3,2,27.14
705
+ 22,Female,48.7,1.76,165,167,66,1.37,1144.0,HIIT,29.0,2.2,4,2,15.72
706
+ 47,Male,66.2,1.71,181,169,71,1.42,1188.0,HIIT,22.8,2.9,3,1,22.64
707
+ 47,Female,40.0,1.76,173,132,63,0.8,475.0,Strength,26.7,2.2,3,1,12.91
708
+ 34,Male,112.4,1.85,162,134,66,1.18,870.0,HIIT,23.4,3.6,4,2,32.84
709
+ 40,Female,70.0,1.55,171,163,74,0.85,693.0,Yoga,31.1,1.5,3,1,29.14
710
+ 32,Male,84.0,1.74,195,127,63,1.45,1013.0,Strength,25.8,2.1,3,1,27.74
711
+ 54,Female,43.8,1.65,171,129,61,1.29,749.0,Yoga,26.6,1.7,4,2,16.09
712
+ 38,Male,123.3,1.62,161,165,65,1.34,1216.0,Yoga,21.2,2.3,4,2,46.98
713
+ 31,Female,57.9,1.56,161,124,50,1.8,1116.0,Yoga,15.1,2.7,5,3,23.79
714
+ 19,Male,82.4,1.96,174,169,62,1.9,1766.0,HIIT,10.1,3.5,5,3,21.45
715
+ 28,Male,84.8,1.79,182,138,55,1.35,1025.0,Cardio,28.8,2.3,4,2,26.47
716
+ 56,Male,109.6,1.66,188,166,66,1.29,1060.0,Cardio,20.5,3.1,3,2,39.77
717
+ 55,Male,86.4,1.77,176,157,61,1.0,777.0,Yoga,27.3,2.8,3,2,27.58
718
+ 51,Female,63.9,1.8,191,130,72,1.07,626.0,HIIT,33.7,2.7,4,2,19.72
719
+ 55,Female,70.8,1.62,166,162,68,0.54,394.0,Strength,26.0,1.8,3,1,26.98
720
+ 51,Male,115.3,1.67,189,139,55,1.38,950.0,Yoga,24.4,2.5,3,2,41.34
721
+ 35,Female,55.3,1.56,187,139,56,1.71,1188.0,Strength,19.8,2.7,5,3,22.72
722
+ 47,Male,73.9,1.8,173,140,50,1.36,942.0,Strength,28.3,3.7,3,1,22.81
723
+ 32,Male,97.3,1.96,189,137,50,1.36,1025.0,HIIT,24.9,3.4,3,2,25.33
724
+ 44,Female,60.4,1.65,176,169,54,1.27,966.0,HIIT,32.6,2.1,4,2,22.19
725
+ 51,Male,49.3,1.61,191,129,55,1.36,868.0,Cardio,28.3,2.9,2,1,19.02
726
+ 55,Male,91.8,1.78,165,153,65,1.44,1091.0,Cardio,23.5,3.4,3,1,28.97
727
+ 50,Female,73.6,1.55,183,145,74,0.89,581.0,HIIT,33.9,2.1,3,1,30.63
728
+ 41,Male,47.1,1.78,165,149,65,1.26,929.0,Yoga,24.7,2.4,3,1,14.87
729
+ 32,Male,65.2,1.62,186,128,63,0.58,408.0,Cardio,25.3,3.4,2,1,24.84
730
+ 47,Male,87.2,1.64,177,165,50,2.0,1634.0,Strength,15.0,3.5,4,3,32.42
731
+ 59,Male,96.7,1.71,183,150,62,0.57,423.0,Yoga,28.4,2.9,3,1,33.07
732
+ 34,Female,46.9,1.61,196,161,69,1.02,821.0,Strength,28.6,1.7,3,2,18.09
733
+ 22,Female,72.1,1.62,183,123,59,1.38,849.0,HIIT,25.1,2.1,3,1,27.47
734
+ 46,Female,62.5,1.54,197,125,73,1.61,906.0,Strength,18.1,2.7,4,3,26.35
735
+ 21,Male,110.7,1.69,193,133,59,1.06,775.0,Yoga,27.0,2.7,3,1,38.76
736
+ 27,Male,102.6,1.83,199,123,58,1.41,954.0,HIIT,26.5,3.5,3,2,30.64
737
+ 34,Female,64.3,1.62,174,145,62,1.76,1276.0,Yoga,19.8,2.7,5,3,24.5
738
+ 27,Male,80.7,1.61,170,166,52,1.75,1598.0,Strength,14.3,3.5,4,3,31.13
739
+ 34,Male,115.3,1.81,181,167,67,1.36,1249.0,Yoga,24.5,2.2,2,1,35.19
740
+ 37,Male,87.8,1.69,183,158,69,1.81,1573.0,HIIT,10.3,3.5,5,3,30.74
741
+ 41,Male,74.3,1.61,160,136,51,1.06,714.0,Strength,24.8,3.5,4,2,28.66
742
+ 22,Female,78.5,1.7,177,138,66,1.36,938.0,Strength,31.9,2.1,4,2,27.16
743
+ 51,Female,77.3,1.58,171,168,68,0.97,733.0,Cardio,31.1,2.0,2,1,30.96
744
+ 23,Female,64.5,1.7,187,125,72,0.51,319.0,Cardio,30.4,1.7,2,1,22.32
745
+ 19,Male,72.0,1.94,199,148,62,1.17,952.0,Yoga,24.7,3.2,3,2,19.13
746
+ 30,Female,77.9,1.77,166,130,62,1.41,916.0,Cardio,27.9,2.6,4,2,24.87
747
+ 28,Female,69.6,1.58,182,135,50,1.49,1006.0,Cardio,27.8,2.0,3,2,27.88
748
+ 40,Male,68.9,1.99,180,149,51,1.16,951.0,Cardio,25.0,2.4,4,2,17.4
749
+ 33,Male,45.9,1.89,193,144,50,1.45,1148.0,Cardio,21.6,2.9,3,2,12.85
750
+ 48,Female,68.2,1.69,170,159,73,0.75,537.0,HIIT,28.4,2.5,3,1,23.88
751
+ 28,Female,79.6,1.59,181,130,54,1.49,968.0,HIIT,28.2,1.5,3,2,31.49
752
+ 33,Female,53.6,1.52,194,126,73,1.02,643.0,Cardio,30.9,2.3,2,1,23.2
753
+ 25,Female,57.7,1.58,188,145,52,1.36,986.0,Yoga,25.7,2.2,3,2,23.11
754
+ 21,Male,74.2,1.93,187,141,56,1.32,1024.0,HIIT,28.3,2.5,3,2,19.92
755
+ 57,Female,64.4,1.56,177,144,73,1.52,985.0,Cardio,17.8,2.7,5,3,26.46
756
+ 21,Female,54.9,1.78,173,138,71,0.55,380.0,HIIT,31.7,2.0,2,1,17.33
757
+ 42,Male,50.3,1.64,177,150,62,0.63,468.0,Strength,27.0,2.4,3,1,18.7
758
+ 20,Female,46.5,1.68,187,145,72,0.91,660.0,HIIT,27.9,2.4,2,1,16.48
759
+ 49,Male,57.8,1.99,183,161,67,0.93,741.0,HIIT,24.7,3.1,3,1,14.6
760
+ 20,Male,83.0,1.8,167,160,73,0.79,695.0,Yoga,29.6,2.9,2,1,25.62
761
+ 44,Male,82.5,1.79,167,155,70,1.51,1159.0,HIIT,13.8,3.5,5,3,25.75
762
+ 46,Female,66.5,1.73,163,142,56,1.11,709.0,Yoga,34.7,2.0,3,1,22.22
763
+ 49,Female,70.2,1.67,186,166,50,0.93,695.0,Strength,32.5,1.8,3,1,25.17
764
+ 36,Male,121.9,1.93,195,132,54,1.49,1082.0,Cardio,21.8,3.4,3,2,32.73
765
+ 38,Female,70.3,1.52,164,144,66,1.19,857.0,Yoga,25.6,2.0,4,2,30.43
766
+ 22,Female,40.3,1.56,192,121,57,1.45,877.0,HIIT,30.8,2.1,4,2,16.56
767
+ 35,Male,101.4,1.76,193,121,64,0.84,559.0,HIIT,23.6,2.9,2,1,32.74
768
+ 45,Male,79.2,1.95,189,135,69,1.47,982.0,Yoga,22.8,2.8,3,2,20.83
769
+ 59,Female,75.8,1.77,167,128,53,1.46,841.0,Strength,33.1,1.8,3,1,24.19
770
+ 39,Male,71.7,1.88,198,147,51,0.55,445.0,Cardio,23.7,2.2,2,1,20.29
771
+ 38,Female,57.7,1.56,185,132,54,1.64,1082.0,HIIT,16.6,2.7,5,3,23.71
772
+ 23,Female,47.4,1.6,196,154,50,0.76,585.0,Strength,33.5,1.6,3,1,18.52
773
+ 18,Female,57.2,1.75,193,160,74,1.29,1032.0,Cardio,33.5,2.4,3,2,18.68
774
+ 22,Female,44.8,1.72,166,132,54,1.48,977.0,Cardio,28.6,1.8,4,2,15.14
775
+ 58,Male,90.2,1.72,199,150,55,0.9,668.0,HIIT,28.3,2.1,2,1,30.49
776
+ 29,Male,84.9,1.72,187,140,51,1.79,1378.0,Yoga,14.3,3.5,4,3,28.7
777
+ 43,Male,95.7,1.77,198,151,50,1.08,807.0,HIIT,24.2,3.4,3,1,30.55
778
+ 51,Male,59.0,1.65,198,153,53,1.22,924.0,HIIT,20.7,2.3,3,2,21.67
779
+ 31,Female,60.5,1.77,187,127,56,1.72,1092.0,HIIT,15.0,2.7,4,3,19.31
780
+ 43,Female,53.8,1.72,173,160,71,1.03,742.0,Strength,30.2,2.3,4,2,18.19
781
+ 44,Male,86.6,1.97,197,167,50,1.66,1372.0,Yoga,11.7,3.5,5,3,22.31
782
+ 26,Female,72.8,1.67,163,121,50,1.37,829.0,Strength,35.0,1.9,2,1,26.1
783
+ 43,Female,66.3,1.77,177,157,57,1.48,1046.0,HIIT,32.7,1.7,4,2,21.16
784
+ 39,Female,56.0,1.6,184,151,69,0.89,672.0,Yoga,32.6,2.0,2,1,21.87
785
+ 47,Male,45.9,1.93,166,159,65,1.29,1015.0,Cardio,29.6,2.0,3,2,12.32
786
+ 34,Male,88.0,1.64,197,147,70,1.9,1536.0,Yoga,14.4,3.5,4,3,32.72
787
+ 43,Male,94.0,1.79,187,156,62,1.31,1012.0,HIIT,23.2,3.4,2,1,29.34
788
+ 53,Female,44.7,1.79,164,160,72,1.34,965.0,Yoga,26.7,2.1,3,2,13.95
789
+ 18,Male,63.2,1.63,162,120,73,0.66,436.0,Cardio,27.5,2.2,3,1,23.79
790
+ 25,Male,95.6,1.9,190,160,72,1.47,1294.0,Cardio,23.8,2.4,4,2,26.48
791
+ 52,Male,47.8,1.86,179,129,67,1.01,645.0,Yoga,24.7,2.8,3,2,13.82
792
+ 32,Male,85.3,1.64,178,123,69,1.77,1197.0,Cardio,13.2,3.5,4,3,31.71
793
+ 39,Male,59.7,1.83,170,154,59,1.35,1143.0,Strength,29.1,2.3,4,2,17.83
794
+ 31,Male,70.2,1.98,199,129,61,0.71,504.0,Yoga,24.2,2.5,2,1,17.91
795
+ 43,Female,72.7,1.8,162,166,50,0.79,590.0,Cardio,32.8,2.1,3,1,22.44
796
+ 45,Female,50.4,1.79,182,130,59,0.74,433.0,Cardio,27.7,2.5,2,1,15.73
797
+ 40,Male,81.7,1.74,166,133,58,0.91,666.0,Yoga,27.0,2.7,2,1,26.99
798
+ 31,Male,49.3,1.62,182,157,52,0.56,484.0,Strength,20.0,3.2,2,1,18.79
799
+ 41,Female,61.9,1.64,166,131,68,1.93,1138.0,Yoga,19.4,2.7,4,3,23.01
800
+ 19,Female,49.1,1.68,193,164,58,1.42,1164.0,Cardio,25.3,2.6,4,2,17.4
801
+ 43,Male,66.5,1.83,178,136,59,1.11,747.0,Yoga,27.1,2.4,3,2,19.86
802
+ 31,Male,75.5,1.93,168,135,68,0.6,446.0,Cardio,20.5,3.4,2,1,20.27
803
+ 24,Male,88.2,1.79,177,154,65,1.76,1491.0,HIIT,11.3,3.5,4,3,27.53
804
+ 20,Male,74.8,1.75,184,121,73,1.33,885.0,Yoga,25.0,3.3,3,2,24.42
805
+ 40,Female,72.2,1.6,173,130,67,0.87,566.0,Yoga,29.2,1.9,3,1,28.2
806
+ 35,Male,62.8,1.63,184,160,63,1.41,1241.0,Cardio,21.9,3.7,4,2,23.64
807
+ 55,Male,84.7,1.79,178,122,52,1.19,719.0,Cardio,23.3,2.4,3,2,26.43
808
+ 52,Male,116.5,1.69,198,148,51,0.53,388.0,Cardio,27.3,2.4,2,1,40.79
809
+ 32,Male,77.4,1.92,174,137,50,1.39,1047.0,Cardio,26.7,3.3,3,2,21.0
810
+ 42,Female,72.9,1.62,175,139,67,1.17,732.0,Yoga,25.7,2.0,4,2,27.78
811
+ 54,Female,58.4,1.59,186,166,73,1.08,807.0,Cardio,32.5,1.9,2,1,23.1
812
+ 45,Female,64.3,1.54,199,133,58,1.67,999.0,Yoga,15.3,2.7,4,3,27.11
813
+ 27,Male,89.3,1.87,169,153,62,1.62,1363.0,Strength,12.7,3.5,5,3,25.54
814
+ 56,Male,90.2,1.61,163,168,51,1.38,1148.0,Yoga,22.6,2.3,3,2,34.8
815
+ 34,Female,59.0,1.62,178,150,56,1.13,847.0,Cardio,30.9,2.4,4,2,22.48
816
+ 56,Male,58.7,1.86,187,159,65,1.09,858.0,Cardio,22.6,3.3,3,2,16.97
817
+ 39,Male,127.5,1.82,180,161,70,1.26,1116.0,Strength,29.8,3.0,3,2,38.49
818
+ 43,Female,68.6,1.52,173,137,68,1.42,875.0,Yoga,28.1,2.6,4,2,29.69
819
+ 42,Female,56.7,1.53,192,149,74,1.07,717.0,Strength,27.4,1.9,3,1,24.22
820
+ 34,Female,64.5,1.78,169,144,64,1.33,958.0,Yoga,27.8,1.8,4,2,20.36
821
+ 30,Female,61.6,1.52,178,138,71,1.78,1228.0,Cardio,19.5,2.7,4,3,26.66
822
+ 37,Male,75.1,1.82,189,127,60,1.23,859.0,Yoga,26.4,3.2,4,2,22.67
823
+ 42,Male,79.3,1.93,181,147,50,1.22,888.0,Cardio,27.3,3.3,2,1,21.29
824
+ 21,Female,72.6,1.68,162,127,70,1.19,756.0,Cardio,34.2,1.8,3,2,25.72
825
+ 27,Male,76.7,1.7,196,150,56,0.96,792.0,HIIT,29.1,2.1,3,1,26.54
826
+ 20,Female,44.2,1.61,177,122,69,1.08,659.0,HIIT,32.4,2.5,2,1,17.05
827
+ 58,Female,56.5,1.7,170,122,57,0.74,406.0,Yoga,27.0,2.7,2,1,19.55
828
+ 35,Male,100.9,1.63,161,163,59,1.1,986.0,Cardio,28.4,3.1,2,1,37.98
829
+ 53,Female,55.8,1.55,171,141,54,1.12,711.0,Strength,27.0,1.8,4,2,23.23
830
+ 39,Male,58.3,1.93,165,136,58,1.35,1010.0,Cardio,27.4,3.7,4,2,15.65
831
+ 51,Male,48.6,1.77,199,155,74,1.47,1128.0,Strength,26.9,3.5,2,1,15.51
832
+ 25,Male,81.7,1.95,188,136,74,1.94,1451.0,Yoga,13.8,3.5,4,3,21.49
833
+ 57,Male,85.6,1.69,189,133,50,1.76,1159.0,Yoga,12.7,3.5,5,3,29.97
834
+ 36,Female,60.0,1.72,161,128,51,1.63,1043.0,Strength,18.2,2.7,5,3,20.28
835
+ 59,Male,126.4,1.69,168,149,68,1.24,915.0,Strength,29.5,2.9,3,1,44.26
836
+ 58,Female,75.4,1.78,161,140,63,1.05,662.0,Cardio,26.0,2.5,4,2,23.8
837
+ 54,Female,64.2,1.69,188,131,69,1.69,996.0,Yoga,16.5,2.7,4,3,22.48
838
+ 23,Female,65.2,1.62,192,156,59,1.37,1069.0,Cardio,31.1,2.5,3,2,24.84
839
+ 43,Female,70.1,1.66,169,151,58,0.99,673.0,Strength,34.6,2.6,2,1,25.44
840
+ 51,Male,102.6,1.77,193,130,59,1.21,779.0,HIIT,21.0,3.4,2,1,32.75
841
+ 23,Male,107.2,1.93,167,139,55,1.15,879.0,HIIT,20.2,3.1,4,2,28.78
842
+ 54,Female,56.5,1.75,196,154,66,1.76,1220.0,HIIT,15.3,2.7,5,3,18.45
843
+ 50,Female,61.6,1.75,192,166,74,1.22,911.0,Strength,25.5,2.2,4,2,20.11
844
+ 39,Male,81.7,1.75,165,165,55,1.32,1198.0,Cardio,29.1,2.8,4,2,26.68
845
+ 38,Female,76.6,1.58,199,130,53,0.74,481.0,Yoga,32.2,2.3,2,1,30.68
846
+ 23,Male,116.8,1.79,178,127,69,1.0,698.0,Strength,26.8,3.4,4,2,36.45
847
+ 23,Female,60.1,1.59,191,123,52,1.8,1107.0,HIIT,17.6,2.7,4,3,23.77
848
+ 21,Male,93.7,1.73,186,146,72,1.0,803.0,Cardio,27.8,3.6,2,1,31.31
849
+ 47,Female,41.6,1.58,160,163,68,1.03,756.0,Yoga,26.6,2.1,4,2,16.66
850
+ 28,Female,55.1,1.79,192,159,67,1.99,1582.0,Yoga,17.0,2.7,5,3,17.2
851
+ 47,Male,127.1,1.76,199,157,73,0.71,552.0,Strength,24.9,3.0,2,1,41.03
852
+ 48,Female,69.1,1.6,191,166,53,1.34,1001.0,Strength,26.1,2.0,4,2,26.99
853
+ 41,Female,66.8,1.74,164,149,57,1.34,898.0,Yoga,29.2,2.3,3,1,22.06
854
+ 26,Male,125.5,1.76,176,163,66,1.15,1031.0,Yoga,23.2,3.1,4,2,40.52
855
+ 20,Female,71.3,1.58,167,167,54,1.07,893.0,HIIT,25.4,1.5,3,2,28.56
856
+ 48,Male,129.2,1.61,193,167,62,1.06,876.0,Yoga,21.4,2.9,4,2,49.84
857
+ 57,Male,96.3,1.86,168,146,74,1.1,795.0,Strength,27.6,2.2,3,2,27.84
858
+ 54,Female,67.5,1.54,182,140,50,0.72,454.0,Cardio,25.2,1.5,3,1,28.46
859
+ 53,Female,64.4,1.55,194,139,62,1.77,1107.0,HIIT,19.7,2.7,4,3,26.81
860
+ 41,Female,64.9,1.57,166,123,53,1.04,576.0,HIIT,25.9,2.4,4,2,26.33
861
+ 48,Female,52.3,1.66,174,130,71,0.74,433.0,Yoga,33.0,1.8,3,1,18.98
862
+ 23,Female,56.7,1.55,179,132,73,1.38,911.0,Cardio,34.0,1.9,4,2,23.6
863
+ 19,Female,46.8,1.63,184,128,63,1.35,864.0,HIIT,34.4,1.6,4,2,17.61
864
+ 37,Female,70.3,1.77,162,123,52,1.01,621.0,Strength,33.7,1.7,2,1,22.44
865
+ 45,Male,80.8,1.76,183,131,54,1.7,1102.0,Yoga,11.4,3.5,4,3,26.08
866
+ 28,Female,56.0,1.5,193,128,56,1.94,1242.0,Strength,16.7,2.7,5,3,24.89
867
+ 21,Male,101.2,1.84,181,132,50,1.3,944.0,Yoga,24.3,3.3,2,1,29.89
868
+ 32,Female,56.6,1.57,170,167,72,1.65,1378.0,HIIT,15.7,2.7,4,3,22.96
869
+ 23,Female,40.9,1.75,167,145,61,0.82,594.0,Yoga,25.2,2.1,3,1,13.36
870
+ 47,Male,127.8,1.65,198,157,60,0.77,598.0,Cardio,28.7,3.5,2,1,46.94
871
+ 55,Female,49.3,1.76,194,161,73,1.28,927.0,Strength,30.5,2.0,2,1,15.92
872
+ 19,Female,64.3,1.63,197,132,57,1.87,1234.0,Cardio,18.0,2.7,5,3,24.2
873
+ 32,Male,49.3,1.62,167,158,74,1.18,1025.0,Strength,29.3,2.5,3,2,18.79
874
+ 28,Female,63.0,1.62,196,147,55,0.68,500.0,Strength,31.7,1.9,2,1,24.01
875
+ 25,Female,41.1,1.67,186,138,71,1.03,711.0,Yoga,31.9,2.4,3,2,14.74
876
+ 43,Female,40.5,1.74,187,143,51,1.5,965.0,HIIT,32.9,2.2,3,2,13.38
877
+ 22,Male,71.0,1.62,199,138,68,0.91,691.0,HIIT,21.2,3.5,2,1,27.05
878
+ 23,Female,60.9,1.62,193,168,69,1.59,1336.0,Cardio,16.8,2.7,5,3,23.21
879
+ 43,Female,64.7,1.66,191,132,69,1.88,1117.0,Yoga,19.8,2.7,4,3,23.48
880
+ 21,Female,51.0,1.71,174,132,73,1.07,706.0,HIIT,34.2,2.2,3,2,17.44
881
+ 36,Female,57.7,1.77,176,147,63,1.65,1213.0,Strength,19.4,2.7,4,3,18.42
882
+ 37,Male,76.9,1.82,192,121,50,1.49,992.0,Strength,24.5,2.8,4,2,23.22
883
+ 50,Male,80.5,1.77,175,129,59,1.85,1181.0,Yoga,14.3,3.5,4,3,25.7
884
+ 37,Female,73.3,1.74,188,141,65,1.03,726.0,Cardio,25.5,2.4,3,2,24.21
885
+ 29,Female,49.0,1.57,168,132,53,1.33,878.0,Yoga,26.5,2.6,3,2,19.88
886
+ 18,Male,114.5,1.97,192,128,60,1.03,725.0,Cardio,24.1,2.6,3,1,29.5
887
+ 43,Male,81.0,1.78,188,152,65,1.58,1189.0,Yoga,12.4,3.5,5,3,25.56
888
+ 31,Female,53.5,1.76,172,133,69,1.22,811.0,Strength,27.6,1.8,4,2,17.27
889
+ 55,Male,52.1,1.68,180,167,50,0.77,637.0,Yoga,23.6,3.0,3,1,18.46
890
+ 54,Female,70.1,1.52,180,139,65,0.76,475.0,HIIT,26.6,2.1,2,1,30.34
891
+ 28,Male,86.9,1.78,164,134,68,1.29,951.0,HIIT,24.9,3.7,4,2,27.43
892
+ 53,Male,73.4,1.76,169,151,70,1.09,815.0,Yoga,27.9,2.8,3,2,23.7
893
+ 30,Male,90.0,1.66,165,152,71,1.32,1104.0,Cardio,26.6,2.1,4,2,32.66
894
+ 20,Male,85.7,1.92,172,136,58,1.72,1287.0,Cardio,10.5,3.5,5,3,23.25
895
+ 50,Female,70.4,1.55,160,143,58,0.73,470.0,Strength,29.9,2.7,2,1,29.3
896
+ 23,Male,57.7,1.71,179,149,58,1.15,942.0,Strength,27.0,3.4,3,2,19.73
897
+ 27,Male,75.7,1.76,167,132,66,0.68,494.0,Cardio,25.3,2.3,3,1,24.44
898
+ 22,Female,61.8,1.52,169,166,61,1.83,1519.0,Yoga,17.0,2.7,5,3,26.75
899
+ 40,Male,80.3,1.76,168,167,74,1.63,1497.0,Strength,13.1,3.5,5,3,25.92
900
+ 27,Male,104.3,1.68,162,135,62,1.28,950.0,Cardio,29.7,3.5,3,2,36.95
901
+ 19,Female,65.7,1.58,170,121,57,1.46,883.0,Cardio,25.9,1.9,3,2,26.32
902
+ 30,Male,120.3,1.96,171,136,65,0.66,494.0,Yoga,23.9,2.6,2,1,31.32
903
+ 57,Female,51.9,1.57,169,151,67,1.05,713.0,HIIT,29.1,2.6,3,2,21.06
904
+ 19,Female,59.1,1.57,184,162,50,1.65,1336.0,Cardio,17.9,2.7,5,3,23.98
905
+ 37,Female,66.9,1.75,184,127,50,1.38,876.0,Strength,26.5,2.1,4,2,21.84
906
+ 18,Female,66.9,1.75,170,122,61,0.94,573.0,Yoga,26.8,1.7,2,1,21.84
907
+ 54,Male,78.7,1.66,195,131,55,1.42,921.0,Yoga,22.9,2.6,3,2,28.56
908
+ 26,Female,62.4,1.61,198,139,58,1.88,1307.0,Yoga,19.8,2.7,4,3,24.07
909
+ 34,Male,102.1,1.71,185,135,72,0.96,713.0,HIIT,27.3,3.2,2,1,34.92
910
+ 26,Male,51.9,2.0,173,133,54,0.75,549.0,HIIT,26.6,2.3,2,1,12.97
911
+ 28,Male,58.3,2.0,198,135,65,1.32,980.0,Strength,28.2,3.0,4,2,14.57
912
+ 32,Male,89.8,1.92,199,168,67,1.93,1783.0,Strength,10.6,3.5,4,3,24.36
913
+ 41,Male,101.1,1.83,160,162,66,0.79,634.0,Yoga,28.6,3.2,2,1,30.19
914
+ 55,Male,118.6,1.72,163,168,67,0.77,640.0,Strength,25.9,2.6,3,1,40.09
915
+ 52,Male,84.8,1.85,189,152,50,1.19,895.0,Cardio,23.4,3.2,2,1,24.78
916
+ 47,Male,80.0,1.77,171,149,68,0.72,531.0,HIIT,28.2,3.5,3,1,25.54
917
+ 48,Male,73.1,1.83,194,131,71,1.05,681.0,Yoga,28.0,2.8,4,2,21.83
918
+ 22,Male,117.3,1.68,172,134,57,1.24,914.0,Yoga,28.5,2.7,3,2,41.56
919
+ 31,Female,77.4,1.71,190,137,52,1.26,863.0,Cardio,26.2,1.8,4,2,26.47
920
+ 28,Female,72.9,1.67,197,147,74,1.13,831.0,Cardio,34.7,2.2,3,2,26.14
921
+ 26,Female,71.2,1.5,182,142,54,1.15,816.0,Cardio,34.6,2.6,2,1,31.64
922
+ 51,Male,88.2,1.62,163,133,72,1.56,1027.0,Cardio,11.8,3.5,4,3,33.61
923
+ 29,Female,75.6,1.8,175,149,57,1.31,976.0,Yoga,25.7,1.9,4,2,23.33
924
+ 52,Female,57.9,1.56,166,152,68,1.66,1135.0,HIIT,15.8,2.7,4,3,23.79
925
+ 52,Female,70.6,1.58,181,164,67,1.02,753.0,HIIT,34.9,2.0,3,2,28.28
926
+ 18,Male,118.6,1.64,188,134,67,0.94,693.0,Cardio,25.6,2.7,3,1,44.1
927
+ 57,Male,55.7,1.99,170,126,70,1.13,705.0,Strength,23.6,3.0,3,2,14.07
928
+ 39,Male,102.3,1.94,192,134,50,0.89,656.0,Yoga,22.9,2.4,3,1,27.18
929
+ 46,Male,72.6,1.87,188,161,64,1.31,1044.0,HIIT,22.6,3.4,4,2,20.76
930
+ 25,Female,63.8,1.68,198,165,67,0.95,784.0,Cardio,31.6,1.9,2,1,22.6
931
+ 28,Female,67.3,1.67,171,157,74,0.61,479.0,Strength,29.2,2.3,3,1,24.13
932
+ 58,Female,59.3,1.58,166,165,56,1.97,1463.0,Strength,19.8,2.7,4,3,23.75
933
+ 54,Female,70.7,1.57,198,163,65,1.14,836.0,Cardio,31.8,2.1,3,1,28.68
934
+ 31,Male,86.9,1.69,185,130,65,1.72,1230.0,Yoga,14.0,3.5,4,3,30.43
935
+ 47,Male,98.2,1.9,199,148,64,0.76,557.0,HIIT,22.9,3.0,3,1,27.2
936
+ 52,Male,63.6,1.62,168,150,55,1.3,965.0,Strength,20.8,2.3,4,2,24.23
937
+ 38,Female,45.2,1.68,193,144,58,1.01,727.0,HIIT,29.9,2.4,3,2,16.01
938
+ 54,Male,117.2,1.62,172,143,56,1.04,736.0,HIIT,23.1,2.3,4,2,44.66
939
+ 22,Male,107.4,1.74,195,138,63,1.34,1017.0,Strength,22.0,2.2,2,1,35.47
940
+ 36,Female,59.1,1.78,184,121,60,0.85,514.0,Cardio,34.5,2.2,2,1,18.65
941
+ 31,Female,53.3,1.64,183,141,70,0.57,402.0,Strength,29.4,2.4,3,1,19.82
942
+ 43,Male,46.2,1.63,176,139,65,1.18,812.0,Strength,21.7,2.1,2,1,17.39
943
+ 21,Male,67.0,1.61,161,152,74,1.32,1104.0,Yoga,22.0,2.1,3,2,25.85
944
+ 42,Male,86.3,1.77,172,127,55,1.77,1113.0,HIIT,11.4,3.5,4,3,27.55
945
+ 59,Male,85.5,1.67,190,144,71,1.99,1418.0,Cardio,15.0,3.5,5,3,30.66
946
+ 42,Male,70.2,1.87,188,165,65,1.38,1127.0,HIIT,22.7,3.4,3,2,20.07
947
+ 35,Male,127.1,1.62,187,128,69,1.02,718.0,Strength,23.3,3.4,4,2,48.43
948
+ 57,Female,75.6,1.67,186,153,65,1.05,723.0,Cardio,31.6,1.8,3,2,27.11
949
+ 25,Female,62.6,1.65,174,142,61,1.2,852.0,Cardio,27.9,2.2,3,1,22.99
950
+ 56,Female,55.7,1.53,190,124,66,1.91,1066.0,Cardio,16.1,2.7,5,3,23.79
951
+ 57,Male,96.1,1.74,199,144,54,1.21,862.0,Cardio,21.6,2.8,3,2,31.74
952
+ 31,Female,76.7,1.62,174,127,74,1.39,883.0,Yoga,28.1,2.3,4,2,29.23
953
+ 49,Male,57.2,1.89,192,135,62,1.14,762.0,Cardio,21.1,3.5,2,1,16.01
954
+ 55,Male,69.9,1.81,179,167,57,1.2,992.0,Strength,20.2,2.1,4,2,21.34
955
+ 50,Female,67.9,1.77,171,164,73,1.03,760.0,Yoga,33.0,2.4,3,2,21.67
956
+ 40,Male,87.9,1.87,196,134,54,1.96,1445.0,Strength,10.7,3.5,5,3,25.14
957
+ 32,Male,102.8,1.98,168,120,61,1.24,818.0,Strength,27.8,2.8,3,2,26.22
958
+ 50,Female,51.8,1.5,182,141,58,1.32,838.0,HIIT,33.0,2.2,3,1,23.02
959
+ 42,Female,57.7,1.57,167,122,52,1.83,1005.0,Cardio,17.7,2.7,4,3,23.41
960
+ 34,Female,66.5,1.69,191,157,52,0.81,636.0,Cardio,28.1,2.3,3,1,23.28
961
+ 50,Male,95.4,1.61,173,133,50,1.16,764.0,Strength,21.5,3.6,4,2,36.8
962
+ 19,Female,69.2,1.6,186,155,74,1.17,907.0,Cardio,32.4,1.6,3,1,27.03
963
+ 31,Female,66.6,1.67,184,137,71,1.02,699.0,Yoga,31.0,1.5,4,2,23.88
964
+ 57,Male,83.4,1.65,172,166,67,1.57,1290.0,HIIT,13.3,3.5,4,3,30.63
965
+ 57,Female,43.8,1.75,180,160,73,1.39,1001.0,Cardio,25.1,1.7,2,1,14.3
966
+ 56,Female,64.2,1.69,190,137,61,1.99,1227.0,Cardio,19.6,2.7,5,3,22.48
967
+ 23,Female,44.1,1.62,196,122,58,0.58,354.0,Yoga,25.7,2.7,2,1,16.8
968
+ 23,Male,87.3,1.91,164,129,58,1.87,1327.0,HIIT,11.8,3.5,5,3,23.93
969
+ 20,Male,55.0,1.6,172,168,67,1.12,1035.0,Yoga,24.0,3.2,4,2,21.48
970
+ 24,Male,87.1,1.74,187,158,67,1.57,1364.0,Strength,10.0,3.5,4,3,28.77
971
+ 25,Male,66.6,1.61,184,166,56,1.38,1260.0,Strength,25.0,3.0,2,1,25.69
972
+ 59,Female,60.4,1.76,194,120,53,1.72,929.0,Cardio,18.8,2.7,5,3,19.5
973
+ 32,Male,126.4,1.83,198,146,62,1.1,883.0,HIIT,28.2,2.1,3,2,37.74
974
+ 46,Male,88.7,1.63,166,146,66,0.75,542.0,Strength,28.8,3.5,2,1,33.38
data/svm_model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:671d28e2a909bb2e205bc85963b80e475ebfdbdccec3e55f4de627ee74288592
3
+ size 72525
data/svr_model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e42da5f5f7fd5af5491b7d8f42a29f9ea4a745a064a2f30b8e1ad9d1265afee7
3
+ size 67243
data/svr_y_norms.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ y_mean,y_std
2
+ 2.576725304465494,0.5868704321355046