Upload 19 files
Browse files- KNN/your code here +0 -0
- NeuralNetwork/NeuralNetwork.py +224 -0
- NeuralNetwork/__pycache__/NeuralNetwork.cpython-312.pyc +0 -0
- NeuralNetwork/graph.png +0 -0
- RandomForest/your code here +0 -0
- SVM/SVM_C.py +125 -0
- SVM/SVM_R.py +130 -0
- SVM/__pycache__/SVM_C.cpython-312.pyc +0 -0
- SVM/__pycache__/SVM_R.cpython-312.pyc +0 -0
- SVM/your code here +0 -0
- data/SVM_train_mean.csv +7 -0
- data/SVM_train_std.csv +7 -0
- data/SVR_train_mean.csv +7 -0
- data/SVR_train_std.csv +7 -0
- data/column_names.csv +12 -0
- data/gym_members_exercise_tracking.csv +974 -0
- data/svm_model.pkl +3 -0
- data/svr_model.pkl +3 -0
- data/svr_y_norms.csv +2 -0
KNN/your code here
ADDED
File without changes
|
NeuralNetwork/NeuralNetwork.py
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import warnings
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
from scipy.stats import pearsonr
|
6 |
+
from sklearn.preprocessing import MinMaxScaler
|
7 |
+
from sklearn.model_selection import train_test_split
|
8 |
+
from sklearn.neural_network import MLPRegressor
|
9 |
+
from sklearn.metrics import mean_squared_error
|
10 |
+
from sklearn.exceptions import ConvergenceWarning
|
11 |
+
from matplotlib import pyplot as plt
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
class My_NeuralNetwork:
|
16 |
+
def __init__(self):
|
17 |
+
self.MAX_LAYERS = 10
|
18 |
+
self.target_column = "Water_Intake (liters)"
|
19 |
+
self.model = None
|
20 |
+
|
21 |
+
# default parameters
|
22 |
+
self.num_layer = 3
|
23 |
+
self.dimension = (32, 32, 32)
|
24 |
+
self.correlation_treshold = 0.01
|
25 |
+
self.epochs = 300
|
26 |
+
|
27 |
+
# Load the dataset and preprocess it
|
28 |
+
csv_file = os.path.join("app", "data", "gym_members_exercise_tracking.csv")
|
29 |
+
df = pd.read_csv(csv_file, engine="python")
|
30 |
+
|
31 |
+
df = df.dropna() # Remove rows with any null cell (just in case)
|
32 |
+
# Assigning some of the features as Category.
|
33 |
+
df["Gender"] = df["Gender"].astype("category")
|
34 |
+
df["Workout_Type"] = df["Workout_Type"].astype("category")
|
35 |
+
|
36 |
+
# getting the names of the numerical and categorical columns for later
|
37 |
+
numeric_columns = list(df.select_dtypes(exclude=["category"]).columns)
|
38 |
+
categorical_columns = list(df.select_dtypes(include=["category"]).columns)
|
39 |
+
|
40 |
+
self.df_original = (
|
41 |
+
df.copy()
|
42 |
+
) # the df variable will have some features removes later but not this one
|
43 |
+
|
44 |
+
# remove the target to the list of features
|
45 |
+
numeric_columns.remove(self.target_column)
|
46 |
+
|
47 |
+
self.scaler = MinMaxScaler() # create a new MinMaxScaler
|
48 |
+
df_scaled = self.scaler.fit_transform(
|
49 |
+
df[numeric_columns]
|
50 |
+
) # scale all the numerical columns using the new MinMaxScaler
|
51 |
+
df[numeric_columns] = df_scaled.copy()
|
52 |
+
|
53 |
+
df_encoded = pd.get_dummies(
|
54 |
+
df, columns=categorical_columns, drop_first=False
|
55 |
+
) # get one-hot encoding for all categorical values
|
56 |
+
df_encoded = df_encoded.astype(
|
57 |
+
float
|
58 |
+
) # convert the one-hot encoding into floats (values between 0.0 - 1.0)
|
59 |
+
new_columns = list(
|
60 |
+
set(df_encoded.columns) - set(numeric_columns)
|
61 |
+
) # get the list of the new columns (former categorical columns)
|
62 |
+
df = (
|
63 |
+
df_encoded.copy()
|
64 |
+
) # the dataframe is now the one with all the one-hot encoded features
|
65 |
+
numeric_columns.extend(
|
66 |
+
new_columns
|
67 |
+
) # add the new columns to the list of numerical columns
|
68 |
+
|
69 |
+
self.numeric_columns = numeric_columns
|
70 |
+
self.df = df
|
71 |
+
|
72 |
+
def train_model(self):
|
73 |
+
# FEATURE SELECTION
|
74 |
+
|
75 |
+
correlation_matrix = self.df[self.numeric_columns].corr()
|
76 |
+
# calculating the Pearson’s correlation coefficient p-value for each element in the matrix
|
77 |
+
p_values = pd.DataFrame(
|
78 |
+
np.zeros((len(self.numeric_columns), len(self.numeric_columns))),
|
79 |
+
columns=self.numeric_columns,
|
80 |
+
index=self.numeric_columns,
|
81 |
+
)
|
82 |
+
# Calculate p-values for each pair
|
83 |
+
for col1 in self.numeric_columns:
|
84 |
+
for col2 in self.numeric_columns:
|
85 |
+
if col1 != col2:
|
86 |
+
_, p_value = pearsonr(
|
87 |
+
self.df[col1], self.df[col2]
|
88 |
+
) # using scipy.stats.pearsonr to get the p-value for one pair of feature
|
89 |
+
p_values.loc[col1, col2] = p_value
|
90 |
+
else:
|
91 |
+
p_values.loc[col1, col2] = (
|
92 |
+
1 # Set to 1 to not get the relation when trying to find correlations between features
|
93 |
+
)
|
94 |
+
|
95 |
+
# Identifying variables that are correlated
|
96 |
+
# When the p-value is smaller than 0.05, there is likely a “real” relationship between the variables.
|
97 |
+
correlated_columns = []
|
98 |
+
for i, col1 in enumerate(self.numeric_columns):
|
99 |
+
for j, col2 in enumerate(self.numeric_columns):
|
100 |
+
if (
|
101 |
+
j > i
|
102 |
+
and p_values.loc[col1, col2] < 0.05
|
103 |
+
and col1 != self.target_column
|
104 |
+
and col2 != self.target_column
|
105 |
+
):
|
106 |
+
correlated_columns.append((col1, col2, p_values.loc[col1, col2]))
|
107 |
+
|
108 |
+
# remove the target to the list of features
|
109 |
+
self.numeric_columns.remove(self.target_column)
|
110 |
+
|
111 |
+
# Identify features with a low correlation with the target
|
112 |
+
target_corr = correlation_matrix[self.target_column].copy()
|
113 |
+
correlation_treshold = self.correlation_treshold
|
114 |
+
features_to_remove = target_corr[abs(target_corr) < correlation_treshold].index
|
115 |
+
features_to_remove = set(features_to_remove.to_list())
|
116 |
+
|
117 |
+
# Identify redundant features using p-values
|
118 |
+
x = {"keep": set(), "remove": set()}
|
119 |
+
for corr_duo in correlated_columns:
|
120 |
+
# put the feature with the highest correlation to the target variable in "keep" and the other one in "remove"
|
121 |
+
if target_corr[corr_duo[0]] > target_corr[corr_duo[1]]:
|
122 |
+
x["keep"].add(corr_duo[0])
|
123 |
+
x["remove"].add(corr_duo[1])
|
124 |
+
else:
|
125 |
+
x["keep"].add(corr_duo[1])
|
126 |
+
x["remove"].add(corr_duo[0])
|
127 |
+
|
128 |
+
# remove features that are already removed from "keep"
|
129 |
+
x["keep"] = x["keep"] - features_to_remove
|
130 |
+
|
131 |
+
# remove features that are in "remove" and not in "keep"
|
132 |
+
redundant_features = x["remove"] - x["keep"]
|
133 |
+
|
134 |
+
features_to_remove = features_to_remove.union(redundant_features)
|
135 |
+
|
136 |
+
# Remove the selected features from the dataframe
|
137 |
+
for feature in list(features_to_remove):
|
138 |
+
self.numeric_columns.remove(feature)
|
139 |
+
self.df.drop(feature, axis=1, inplace=True)
|
140 |
+
self.features_to_remove = features_to_remove
|
141 |
+
|
142 |
+
print(
|
143 |
+
f"List of numerical features that will be used to predict the target ({self.target_column}) :"
|
144 |
+
)
|
145 |
+
print(self.numeric_columns)
|
146 |
+
|
147 |
+
# CREATE & TRAIN MODEL
|
148 |
+
|
149 |
+
# split the data
|
150 |
+
X = self.df[self.numeric_columns]
|
151 |
+
y = self.df[self.target_column]
|
152 |
+
|
153 |
+
# 20% of the dataset will be use as test data
|
154 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
|
155 |
+
|
156 |
+
self.model = MLPRegressor(
|
157 |
+
hidden_layer_sizes=self.dimension,
|
158 |
+
activation="relu", # ReLU activation function
|
159 |
+
solver="adam", # Adam optimizer
|
160 |
+
max_iter=1, # One iteration per fit call since the training loop is defined below
|
161 |
+
warm_start=True,
|
162 |
+
) # Used to measure the MSE throughout the iterations
|
163 |
+
|
164 |
+
# ignoring the warning raised because we're using a manual loop for training
|
165 |
+
warnings.filterwarnings("ignore", category=ConvergenceWarning)
|
166 |
+
|
167 |
+
# Track MSE values during training
|
168 |
+
mse_values = []
|
169 |
+
epochs = self.epochs
|
170 |
+
|
171 |
+
for epoch in range(epochs):
|
172 |
+
# Train the model
|
173 |
+
self.model.fit(X_train, y_train)
|
174 |
+
|
175 |
+
# Predict on the test set
|
176 |
+
y_pred = self.model.predict(X_test)
|
177 |
+
|
178 |
+
# Evaluate the model
|
179 |
+
mse = mean_squared_error(y_test, y_pred)
|
180 |
+
mse_values.append(mse)
|
181 |
+
|
182 |
+
# SAVE THE EVOLUTION OF THE MSE THROUGHOUT THE TRAINING
|
183 |
+
plt.figure(figsize=(10, 6))
|
184 |
+
plt.plot(range(epochs), mse_values, marker='o', linestyle='-')
|
185 |
+
plt.title(f"Evolution of MSE During Training. Final MSE = {mse:.4f}")
|
186 |
+
plt.xlabel('Epoch')
|
187 |
+
plt.ylabel('Mean Squared Error')
|
188 |
+
plt.grid(True)
|
189 |
+
plt.savefig(os.path.join("app", "NeuralNetwork", "graph.png"))
|
190 |
+
|
191 |
+
print(f"Final epoch MSE: {mse:.4f}")
|
192 |
+
|
193 |
+
def predict(self, input_data: pd.DataFrame) -> float:
|
194 |
+
# scale the input using the scaler used during training
|
195 |
+
df_used_for_scaling = input_data[
|
196 |
+
[
|
197 |
+
col
|
198 |
+
for col in input_data.columns
|
199 |
+
if col
|
200 |
+
not in [
|
201 |
+
"Gender_Male",
|
202 |
+
"Gender_Female",
|
203 |
+
"Workout_Type_Strength",
|
204 |
+
"Workout_Type_Yoga",
|
205 |
+
"Workout_Type_HIIT",
|
206 |
+
"Workout_Type_Cardio",
|
207 |
+
]
|
208 |
+
]
|
209 |
+
]
|
210 |
+
scaled_input = self.scaler.transform(
|
211 |
+
input_data[[col for col in df_used_for_scaling.columns]]
|
212 |
+
)
|
213 |
+
input_data[df_used_for_scaling.columns] = scaled_input.copy()
|
214 |
+
|
215 |
+
# keep only the required features for the prediction
|
216 |
+
input_data = input_data.drop(self.features_to_remove, axis=1, errors="ignore")
|
217 |
+
|
218 |
+
input_data = input_data[self.numeric_columns]
|
219 |
+
|
220 |
+
print("Prediction using the following input : ")
|
221 |
+
print(input_data.to_csv())
|
222 |
+
|
223 |
+
water_intake = self.model.predict(input_data)
|
224 |
+
return water_intake
|
NeuralNetwork/__pycache__/NeuralNetwork.cpython-312.pyc
ADDED
Binary file (9.06 kB). View file
|
|
NeuralNetwork/graph.png
ADDED
![]() |
RandomForest/your code here
ADDED
File without changes
|
SVM/SVM_C.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pickle
|
3 |
+
import pandas as pd
|
4 |
+
|
5 |
+
class SVM_Classifier:
|
6 |
+
def __init__(self):
|
7 |
+
|
8 |
+
self.weight = 70 # default weight in kg
|
9 |
+
self.height = 1.75 # default height in m
|
10 |
+
self.gender = "Male" # default gender
|
11 |
+
self.duration = 1.0 # default duration in hours
|
12 |
+
self.fat = 25 # default fat percentage
|
13 |
+
self.freq = 3 # default workouts per week
|
14 |
+
self.experience = 1 # default experience level
|
15 |
+
self.workout = "Cardio" # default workout type
|
16 |
+
|
17 |
+
# Add debug info dictionary
|
18 |
+
self.debug_info = {}
|
19 |
+
|
20 |
+
# Load the model and required data
|
21 |
+
try:
|
22 |
+
# Load the SVM model
|
23 |
+
model_file = os.path.join("app", "data", "svm_model.pkl")
|
24 |
+
with open(model_file, 'rb') as f:
|
25 |
+
self.svm_model = pickle.load(f)
|
26 |
+
|
27 |
+
# Load the column names
|
28 |
+
cols_file = os.path.join("app", "data", "column_names.csv")
|
29 |
+
with open(cols_file, 'r') as f:
|
30 |
+
self.column_names = [line.strip() for line in f]
|
31 |
+
|
32 |
+
# Load normalization parameters
|
33 |
+
mean_file = os.path.join("app", "data", "SVM_train_mean.csv")
|
34 |
+
self.df_mean = pd.read_csv(mean_file, index_col=0)
|
35 |
+
|
36 |
+
std_file = os.path.join("app", "data", "SVM_train_std.csv")
|
37 |
+
self.df_std = pd.read_csv(std_file, index_col=0)
|
38 |
+
|
39 |
+
except Exception as e:
|
40 |
+
print(f"Error loading model files: {str(e)}")
|
41 |
+
raise
|
42 |
+
|
43 |
+
def make_prediction(self):
|
44 |
+
try:
|
45 |
+
num = [self.weight, self.height, self.duration, self.fat, self.freq, self.experience]
|
46 |
+
self.debug_info['original_values'] = dict(zip(
|
47 |
+
['weight', 'height', 'duration', 'fat', 'freq', 'experience'],
|
48 |
+
num
|
49 |
+
))
|
50 |
+
|
51 |
+
m_norm = self.df_mean.values.flatten().tolist()
|
52 |
+
s_norm = self.df_std.values.flatten().tolist()
|
53 |
+
self.debug_info['normalization'] = {
|
54 |
+
'means': m_norm,
|
55 |
+
'stds': s_norm
|
56 |
+
}
|
57 |
+
|
58 |
+
norm = [(x-y)/z for x, y, z in zip(num, m_norm, s_norm)]
|
59 |
+
self.debug_info['normalized_values'] = dict(zip(
|
60 |
+
['weight', 'height', 'duration', 'fat', 'freq', 'experience'],
|
61 |
+
norm
|
62 |
+
))
|
63 |
+
|
64 |
+
if self.gender == 'Female':
|
65 |
+
norm.extend([1,0])
|
66 |
+
self.debug_info['gender_encoding'] = 'Female: [1, 0]'
|
67 |
+
else:
|
68 |
+
norm.extend([0,1])
|
69 |
+
self.debug_info['gender_encoding'] = 'Male: [0, 1]'
|
70 |
+
|
71 |
+
# Add one-hot encoded workout type
|
72 |
+
workout_encoding = {
|
73 |
+
'Cardio': [1, 0, 0, 0],
|
74 |
+
'HIIT': [0, 1, 0, 0],
|
75 |
+
'Strength': [0, 0, 1, 0],
|
76 |
+
'Yoga': [0, 0, 0, 1]
|
77 |
+
}
|
78 |
+
norm.extend(workout_encoding[self.workout])
|
79 |
+
self.debug_info['workout_encoding'] = f'{self.workout}: {workout_encoding[self.workout]}'
|
80 |
+
|
81 |
+
X = pd.DataFrame([norm],columns=self.column_names)
|
82 |
+
self.debug_info['final_feature_vector'] = X.to_dict('records')[0]
|
83 |
+
|
84 |
+
prediction = self.svm_model.predict(X)
|
85 |
+
self.debug_info['prediction'] = prediction[0]
|
86 |
+
|
87 |
+
return prediction[0]
|
88 |
+
|
89 |
+
except Exception as e:
|
90 |
+
self.debug_info['error'] = str(e)
|
91 |
+
return f"Error: {str(e)}"
|
92 |
+
|
93 |
+
def get_debug_info(self):
|
94 |
+
"""Returns formatted debug information"""
|
95 |
+
debug_text = "=== DEBUG INFORMATION ===\n\n"
|
96 |
+
|
97 |
+
# Original values
|
98 |
+
debug_text += "Original Values:\n"
|
99 |
+
for key, value in self.debug_info['original_values'].items():
|
100 |
+
debug_text += f"{key}: {value}\n"
|
101 |
+
|
102 |
+
# Normalization parameters
|
103 |
+
debug_text += "\nNormalization Parameters:\n"
|
104 |
+
for i, (mean, std) in enumerate(zip(
|
105 |
+
self.debug_info['normalization']['means'],
|
106 |
+
self.debug_info['normalization']['stds']
|
107 |
+
)):
|
108 |
+
debug_text += f"Feature {i}: mean={mean:.4f}, std={std:.4f}\n"
|
109 |
+
|
110 |
+
# Normalized values
|
111 |
+
debug_text += "\nNormalized Values:\n"
|
112 |
+
for key, value in self.debug_info['normalized_values'].items():
|
113 |
+
debug_text += f"{key}: {value:.4f}\n"
|
114 |
+
|
115 |
+
# Encodings
|
116 |
+
debug_text += f"\nGender Encoding: {self.debug_info['gender_encoding']}\n"
|
117 |
+
debug_text += f"Workout Encoding: {self.debug_info['workout_encoding']}\n"
|
118 |
+
|
119 |
+
# Final vector
|
120 |
+
debug_text += f"\nVector: {self.debug_info['final_feature_vector']}\n"
|
121 |
+
|
122 |
+
# Final prediction
|
123 |
+
debug_text += f"\nFinal Prediction: {self.debug_info['prediction']}\n"
|
124 |
+
|
125 |
+
return debug_text
|
SVM/SVM_R.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pickle
|
3 |
+
import pandas as pd
|
4 |
+
|
5 |
+
class SVM_Regressor:
|
6 |
+
def __init__(self):
|
7 |
+
|
8 |
+
self.weight = 70 # default weight in kg
|
9 |
+
self.height = 1.75 # default height in m
|
10 |
+
self.gender = "Male" # default gender
|
11 |
+
self.duration = 1.0 # default duration in hours
|
12 |
+
self.fat = 25 # default fat percentage
|
13 |
+
self.freq = 3 # default workouts per week
|
14 |
+
self.experience = 1 # default experience level
|
15 |
+
self.workout = "Cardio" # default workout type
|
16 |
+
|
17 |
+
# Add debug info dictionary
|
18 |
+
self.debug_info = {}
|
19 |
+
|
20 |
+
# Load the model and required data
|
21 |
+
try:
|
22 |
+
# Load the SVM model
|
23 |
+
model_file = os.path.join("app", "data", "svr_model.pkl")
|
24 |
+
with open(model_file, 'rb') as f:
|
25 |
+
self.svm_model = pickle.load(f)
|
26 |
+
|
27 |
+
# Load the column names
|
28 |
+
cols_file = os.path.join("app", "data", "column_names.csv")
|
29 |
+
with open(cols_file, 'r') as f:
|
30 |
+
self.column_names = [line.strip() for line in f]
|
31 |
+
|
32 |
+
# Load normalization parameters
|
33 |
+
Xmean_file = os.path.join("app", "data", "SVR_train_mean.csv")
|
34 |
+
self.df_mean = pd.read_csv(Xmean_file, index_col=0)
|
35 |
+
|
36 |
+
Xstd_file = os.path.join("app", "data", "SVR_train_std.csv")
|
37 |
+
self.df_std = pd.read_csv(Xstd_file, index_col=0)
|
38 |
+
|
39 |
+
ynorm_file = os.path.join("app", "data", "svr_y_norms.csv")
|
40 |
+
df_ynorm = pd.read_csv(ynorm_file, index_col=False)
|
41 |
+
self.y_mean = df_ynorm['y_mean'].iloc[0]
|
42 |
+
self.y_std = df_ynorm['y_std'].iloc[0]
|
43 |
+
|
44 |
+
except Exception as e:
|
45 |
+
print(f"Error loading model files: {str(e)}")
|
46 |
+
raise
|
47 |
+
|
48 |
+
def make_prediction(self):
|
49 |
+
try:
|
50 |
+
num = [self.weight, self.height, self.duration, self.fat, self.freq, self.experience]
|
51 |
+
self.debug_info['original_values'] = dict(zip(
|
52 |
+
['weight', 'height', 'duration', 'fat', 'freq', 'experience'],
|
53 |
+
num
|
54 |
+
))
|
55 |
+
|
56 |
+
m_norm = self.df_mean.values.flatten().tolist()
|
57 |
+
s_norm = self.df_std.values.flatten().tolist()
|
58 |
+
self.debug_info['normalization'] = {
|
59 |
+
'means': m_norm,
|
60 |
+
'stds': s_norm
|
61 |
+
}
|
62 |
+
|
63 |
+
norm = [(x-y)/z for x, y, z in zip(num, m_norm, s_norm)]
|
64 |
+
self.debug_info['normalized_values'] = dict(zip(
|
65 |
+
['weight', 'height', 'duration', 'fat', 'freq', 'experience'],
|
66 |
+
norm
|
67 |
+
))
|
68 |
+
|
69 |
+
if self.gender == 'Female':
|
70 |
+
norm.extend([1,0])
|
71 |
+
self.debug_info['gender_encoding'] = 'Female: [1, 0]'
|
72 |
+
else:
|
73 |
+
norm.extend([0,1])
|
74 |
+
self.debug_info['gender_encoding'] = 'Male: [0, 1]'
|
75 |
+
|
76 |
+
# Add one-hot encoded workout type
|
77 |
+
workout_encoding = {
|
78 |
+
'Cardio': [1, 0, 0, 0],
|
79 |
+
'HIIT': [0, 1, 0, 0],
|
80 |
+
'Strength': [0, 0, 1, 0],
|
81 |
+
'Yoga': [0, 0, 0, 1]
|
82 |
+
}
|
83 |
+
norm.extend(workout_encoding[self.workout])
|
84 |
+
self.debug_info['workout_encoding'] = f'{self.workout}: {workout_encoding[self.workout]}'
|
85 |
+
|
86 |
+
X = pd.DataFrame([norm],columns=self.column_names)
|
87 |
+
self.debug_info['final_feature_vector'] = X.to_dict('records')[0]
|
88 |
+
|
89 |
+
prediction = self.svm_model.predict(X)
|
90 |
+
self.debug_info['prediction'] = prediction[0]
|
91 |
+
|
92 |
+
return f"""It is recommended to take {(prediction[0]*self.y_std + self.y_mean):.2f} litres of water for this session."""
|
93 |
+
|
94 |
+
except Exception as e:
|
95 |
+
self.debug_info['error'] = str(e)
|
96 |
+
return f"Error: {str(e)}"
|
97 |
+
|
98 |
+
def get_debug_info(self):
|
99 |
+
"""Returns formatted debug information"""
|
100 |
+
debug_text = "=== DEBUG INFORMATION ===\n\n"
|
101 |
+
|
102 |
+
# Original values
|
103 |
+
debug_text += "Original Values:\n"
|
104 |
+
for key, value in self.debug_info['original_values'].items():
|
105 |
+
debug_text += f"{key}: {value}\n"
|
106 |
+
|
107 |
+
# Normalization parameters
|
108 |
+
debug_text += "\nNormalization Parameters:\n"
|
109 |
+
for i, (mean, std) in enumerate(zip(
|
110 |
+
self.debug_info['normalization']['means'],
|
111 |
+
self.debug_info['normalization']['stds']
|
112 |
+
)):
|
113 |
+
debug_text += f"Feature {i}: mean={mean:.4f}, std={std:.4f}\n"
|
114 |
+
|
115 |
+
# Normalized values
|
116 |
+
debug_text += "\nNormalized Values:\n"
|
117 |
+
for key, value in self.debug_info['normalized_values'].items():
|
118 |
+
debug_text += f"{key}: {value:.4f}\n"
|
119 |
+
|
120 |
+
# Encodings
|
121 |
+
debug_text += f"\nGender Encoding: {self.debug_info['gender_encoding']}\n"
|
122 |
+
debug_text += f"Workout Encoding: {self.debug_info['workout_encoding']}\n"
|
123 |
+
|
124 |
+
# Final vector
|
125 |
+
debug_text += f"\nVector: {self.debug_info['final_feature_vector']}\n"
|
126 |
+
|
127 |
+
# Final prediction
|
128 |
+
debug_text += f"\nFinal Prediction: {self.debug_info['prediction']}\n"
|
129 |
+
|
130 |
+
return debug_text
|
SVM/__pycache__/SVM_C.cpython-312.pyc
ADDED
Binary file (6.39 kB). View file
|
|
SVM/__pycache__/SVM_R.cpython-312.pyc
ADDED
Binary file (6.94 kB). View file
|
|
SVM/your code here
ADDED
File without changes
|
data/SVM_train_mean.csv
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,0
|
2 |
+
Weight (kg),73.34884979702301
|
3 |
+
Height (m),1.7188362652232745
|
4 |
+
Session_Duration (hours),1.2282408660351827
|
5 |
+
Fat_Percentage,25.646143437077132
|
6 |
+
Workout_Frequency (days/week),3.2205683355886334
|
7 |
+
Experience_Level,1.7456021650879567
|
data/SVM_train_std.csv
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,0
|
2 |
+
Weight (kg),21.0623331745688
|
3 |
+
Height (m),0.12762261858774263
|
4 |
+
Session_Duration (hours),0.32066224057136233
|
5 |
+
Fat_Percentage,5.79558944870914
|
6 |
+
Workout_Frequency (days/week),0.8418647527500103
|
7 |
+
Experience_Level,0.7063141541349356
|
data/SVR_train_mean.csv
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,0
|
2 |
+
Weight (kg),73.34884979702301
|
3 |
+
Height (m),1.7188362652232745
|
4 |
+
Session_Duration (hours),1.2282408660351827
|
5 |
+
Fat_Percentage,25.646143437077132
|
6 |
+
Workout_Frequency (days/week),3.2205683355886334
|
7 |
+
Experience_Level,1.7456021650879567
|
data/SVR_train_std.csv
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,0
|
2 |
+
Weight (kg),21.0623331745688
|
3 |
+
Height (m),0.12762261858774263
|
4 |
+
Session_Duration (hours),0.32066224057136233
|
5 |
+
Fat_Percentage,5.79558944870914
|
6 |
+
Workout_Frequency (days/week),0.8418647527500103
|
7 |
+
Experience_Level,0.7063141541349356
|
data/column_names.csv
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Weight (kg)
|
2 |
+
Height (m)
|
3 |
+
Session_Duration (hours)
|
4 |
+
Fat_Percentage
|
5 |
+
Workout_Frequency (days/week)
|
6 |
+
Experience_Level
|
7 |
+
Gender_Female
|
8 |
+
Gender_Male
|
9 |
+
Workout_Type_Cardio
|
10 |
+
Workout_Type_HIIT
|
11 |
+
Workout_Type_Strength
|
12 |
+
Workout_Type_Yoga
|
data/gym_members_exercise_tracking.csv
ADDED
@@ -0,0 +1,974 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Age,Gender,Weight (kg),Height (m),Max_BPM,Avg_BPM,Resting_BPM,Session_Duration (hours),Calories_Burned,Workout_Type,Fat_Percentage,Water_Intake (liters),Workout_Frequency (days/week),Experience_Level,BMI
|
2 |
+
56,Male,88.3,1.71,180,157,60,1.69,1313.0,Yoga,12.6,3.5,4,3,30.2
|
3 |
+
46,Female,74.9,1.53,179,151,66,1.3,883.0,HIIT,33.9,2.1,4,2,32.0
|
4 |
+
32,Female,68.1,1.66,167,122,54,1.11,677.0,Cardio,33.4,2.3,4,2,24.71
|
5 |
+
25,Male,53.2,1.7,190,164,56,0.59,532.0,Strength,28.8,2.1,3,1,18.41
|
6 |
+
38,Male,46.1,1.79,188,158,68,0.64,556.0,Strength,29.2,2.8,3,1,14.39
|
7 |
+
56,Female,58.0,1.68,168,156,74,1.59,1116.0,HIIT,15.5,2.7,5,3,20.55
|
8 |
+
36,Male,70.3,1.72,174,169,73,1.49,1385.0,Cardio,21.3,2.3,3,2,23.76
|
9 |
+
40,Female,69.7,1.51,189,141,64,1.27,895.0,Cardio,30.6,1.9,3,2,30.57
|
10 |
+
28,Male,121.7,1.94,185,127,52,1.03,719.0,Strength,28.9,2.6,4,2,32.34
|
11 |
+
28,Male,101.8,1.84,169,136,64,1.08,808.0,Cardio,29.7,2.7,3,1,30.07
|
12 |
+
41,Male,120.8,1.67,188,146,54,0.82,593.0,HIIT,20.5,3.0,2,1,43.31
|
13 |
+
53,Male,51.7,1.7,175,152,72,1.15,865.0,HIIT,23.6,3.5,3,2,17.89
|
14 |
+
57,Male,112.5,1.61,195,165,61,1.24,1013.0,Cardio,22.1,2.7,3,2,43.4
|
15 |
+
41,Male,94.5,2.0,179,136,69,1.18,794.0,HIIT,27.6,3.7,3,1,23.62
|
16 |
+
20,Male,117.7,1.81,196,161,54,1.35,1195.0,Yoga,26.4,3.3,3,2,35.93
|
17 |
+
39,Female,42.5,1.75,181,131,52,1.13,740.0,Strength,26.2,2.1,2,1,13.88
|
18 |
+
19,Female,64.0,1.53,166,167,58,1.33,1111.0,HIIT,29.8,2.3,3,2,27.34
|
19 |
+
41,Female,43.8,1.77,182,165,58,1.19,884.0,Cardio,31.9,1.6,3,1,13.98
|
20 |
+
47,Female,66.8,1.75,199,146,56,1.13,742.0,Strength,32.8,2.5,3,2,21.81
|
21 |
+
55,Female,75.2,1.67,188,167,51,1.37,1030.0,HIIT,25.2,2.2,2,1,26.96
|
22 |
+
19,Male,89.0,1.77,175,127,72,1.5,1048.0,Strength,28.9,3.7,4,2,28.41
|
23 |
+
38,Male,71.9,1.77,197,142,72,1.12,875.0,Cardio,25.7,3.1,2,1,22.95
|
24 |
+
50,Female,71.0,1.68,187,161,70,1.17,848.0,Yoga,33.1,2.5,2,1,25.16
|
25 |
+
29,Male,120.9,1.78,197,168,65,0.78,721.0,Yoga,28.1,3.4,2,1,38.16
|
26 |
+
39,Female,64.3,1.69,190,148,58,1.25,925.0,HIIT,26.9,1.9,4,2,22.51
|
27 |
+
42,Female,63.7,1.71,173,169,62,1.42,1080.0,Yoga,26.1,1.8,3,2,21.78
|
28 |
+
44,Male,65.2,1.8,192,139,68,0.73,502.0,HIIT,27.2,2.7,2,1,20.12
|
29 |
+
59,Male,53.9,1.75,168,135,69,1.48,989.0,Strength,21.6,2.8,4,2,17.6
|
30 |
+
45,Male,84.9,1.86,186,136,66,1.64,1104.0,HIIT,14.2,3.5,5,3,24.54
|
31 |
+
33,Female,78.0,1.68,183,135,55,1.29,871.0,HIIT,32.3,1.8,3,2,27.64
|
32 |
+
32,Male,108.2,1.8,172,138,53,1.27,964.0,HIIT,28.4,3.5,3,1,33.4
|
33 |
+
20,Female,65.4,1.52,185,127,50,1.03,654.0,Yoga,28.0,2.2,4,2,28.31
|
34 |
+
54,Female,50.2,1.61,188,157,67,1.48,1046.0,HIIT,28.2,2.7,2,1,19.37
|
35 |
+
24,Female,58.9,1.51,187,157,68,1.04,816.0,Cardio,31.7,2.5,2,1,25.83
|
36 |
+
38,Male,81.4,1.71,187,148,58,1.52,1237.0,HIIT,10.2,3.5,5,3,27.84
|
37 |
+
26,Male,127.6,1.73,167,160,62,1.32,1162.0,Strength,27.3,2.9,3,1,42.63
|
38 |
+
56,Female,59.3,1.56,182,155,57,1.26,879.0,Cardio,33.4,2.6,4,2,24.37
|
39 |
+
35,Male,96.9,1.71,188,145,72,1.34,1069.0,Strength,24.2,2.9,3,2,33.14
|
40 |
+
21,Male,62.6,1.81,164,150,62,1.3,1072.0,Strength,27.6,3.5,4,2,19.11
|
41 |
+
42,Male,45.5,1.6,166,163,64,1.31,1057.0,Strength,21.7,2.6,3,2,17.77
|
42 |
+
31,Female,48.8,1.51,195,131,60,1.48,969.0,Cardio,28.2,2.0,2,1,21.4
|
43 |
+
26,Female,44.3,1.6,186,136,61,1.08,734.0,Cardio,34.7,2.0,3,1,17.3
|
44 |
+
43,Male,113.2,1.83,161,134,63,1.45,962.0,Yoga,29.9,2.9,4,2,33.8
|
45 |
+
19,Female,60.5,1.59,184,128,53,1.14,730.0,Cardio,30.1,2.2,2,1,23.93
|
46 |
+
37,Male,124.2,1.76,168,158,50,1.5,1304.0,HIIT,29.3,2.8,2,1,40.1
|
47 |
+
45,Male,52.4,1.85,186,161,73,1.2,956.0,Strength,25.2,2.5,3,1,15.31
|
48 |
+
24,Male,54.7,1.74,160,167,53,0.84,772.0,Yoga,22.9,3.6,3,1,18.07
|
49 |
+
25,Male,88.1,1.95,182,131,68,1.41,1016.0,Cardio,22.7,3.0,2,1,23.17
|
50 |
+
52,Female,59.7,1.71,169,151,58,1.23,836.0,Strength,34.3,2.0,3,1,20.42
|
51 |
+
31,Female,79.7,1.54,184,144,59,1.03,742.0,Cardio,26.7,2.3,4,2,33.61
|
52 |
+
34,Female,51.0,1.62,162,158,53,1.42,1122.0,Yoga,30.8,2.4,3,2,19.43
|
53 |
+
53,Male,84.2,1.76,165,137,69,1.67,1133.0,Cardio,12.8,3.5,5,3,27.18
|
54 |
+
57,Male,122.1,1.89,165,134,58,1.13,750.0,Cardio,27.4,3.6,3,1,34.18
|
55 |
+
21,Male,96.7,1.72,161,151,62,1.26,1046.0,Strength,25.0,2.8,3,1,32.69
|
56 |
+
19,Female,73.0,1.79,177,125,61,0.81,506.0,HIIT,27.7,1.6,3,1,22.78
|
57 |
+
23,Male,114.8,1.6,182,163,60,1.47,1318.0,Cardio,21.7,2.7,4,2,44.84
|
58 |
+
59,Female,65.5,1.52,161,162,61,1.4,1021.0,Yoga,31.2,2.1,3,2,28.35
|
59 |
+
21,Female,50.3,1.52,171,154,67,1.08,832.0,Cardio,32.2,2.6,3,1,21.77
|
60 |
+
46,Female,61.0,1.71,181,153,61,1.67,1150.0,Cardio,17.8,2.7,4,3,20.86
|
61 |
+
35,Female,44.6,1.62,196,157,65,0.56,440.0,HIIT,32.4,2.0,2,1,16.99
|
62 |
+
43,Female,58.2,1.61,179,124,54,1.04,580.0,Strength,26.4,2.6,3,2,22.45
|
63 |
+
51,Female,44.8,1.63,198,137,69,1.08,666.0,Yoga,33.8,2.1,4,2,16.86
|
64 |
+
27,Male,87.5,1.63,183,135,74,1.75,1299.0,Strength,12.9,3.5,5,3,32.93
|
65 |
+
53,Male,51.8,1.74,179,127,61,1.23,773.0,Strength,21.3,3.7,3,2,17.11
|
66 |
+
31,Female,64.4,1.7,160,144,70,1.97,1418.0,Strength,17.3,2.7,5,3,22.28
|
67 |
+
48,Female,67.1,1.61,160,151,74,0.62,421.0,Cardio,33.4,1.5,2,1,25.89
|
68 |
+
32,Male,85.9,1.6,176,145,60,1.99,1587.0,HIIT,14.5,3.5,5,3,33.55
|
69 |
+
25,Female,65.4,1.77,160,141,58,0.89,627.0,Cardio,27.6,2.6,3,1,20.88
|
70 |
+
31,Female,61.1,1.76,189,150,67,1.81,1358.0,Yoga,18.6,2.7,4,3,19.72
|
71 |
+
40,Male,106.5,1.65,162,162,74,1.32,1176.0,HIIT,21.0,3.6,4,2,39.12
|
72 |
+
57,Female,64.0,1.52,170,129,52,1.73,1004.0,Strength,15.2,2.7,5,3,27.7
|
73 |
+
38,Female,61.4,1.54,183,131,69,1.47,963.0,HIIT,30.6,2.7,3,2,25.89
|
74 |
+
33,Female,40.5,1.63,181,147,66,1.07,786.0,Yoga,31.9,1.5,4,2,15.24
|
75 |
+
35,Male,70.1,1.79,185,125,63,1.08,743.0,Cardio,28.0,2.3,3,2,21.88
|
76 |
+
41,Male,94.1,1.62,172,139,50,1.13,777.0,Cardio,23.4,3.1,4,2,35.86
|
77 |
+
43,Male,55.5,1.82,160,124,66,1.08,663.0,Strength,20.1,2.0,3,1,16.76
|
78 |
+
42,Female,53.7,1.72,183,142,74,1.37,875.0,Cardio,29.8,1.6,3,1,18.15
|
79 |
+
58,Female,66.1,1.75,169,128,57,0.63,363.0,Cardio,25.2,1.8,2,1,21.58
|
80 |
+
46,Male,103.9,1.77,194,148,54,1.18,864.0,Yoga,20.9,2.9,2,1,33.16
|
81 |
+
32,Female,61.7,1.58,183,135,54,1.87,1262.0,HIIT,16.6,2.7,5,3,24.72
|
82 |
+
18,Female,52.3,1.74,187,165,58,1.2,990.0,Cardio,29.4,2.2,2,1,17.27
|
83 |
+
42,Female,59.5,1.74,195,141,52,1.78,1129.0,Yoga,16.4,2.7,5,3,19.65
|
84 |
+
24,Female,72.9,1.76,175,127,68,0.86,546.0,Yoga,30.8,1.5,3,1,23.53
|
85 |
+
26,Female,76.7,1.63,199,139,72,1.08,751.0,Strength,25.6,1.7,2,1,28.87
|
86 |
+
41,Male,72.1,1.83,175,133,58,1.13,744.0,Yoga,21.4,2.8,3,2,21.53
|
87 |
+
18,Female,54.8,1.68,176,158,71,1.27,1003.0,Strength,32.0,2.2,4,2,19.42
|
88 |
+
25,Male,105.0,1.88,174,156,67,1.34,1150.0,Cardio,21.4,2.3,3,2,29.71
|
89 |
+
41,Female,55.0,1.55,175,169,65,1.45,1103.0,Strength,31.4,2.0,4,2,22.89
|
90 |
+
28,Male,81.6,1.66,174,153,50,1.09,917.0,Yoga,20.5,3.5,4,2,29.61
|
91 |
+
34,Female,75.6,1.6,193,130,51,0.64,416.0,HIIT,29.1,2.7,2,1,29.53
|
92 |
+
25,Male,81.5,1.61,170,159,63,1.93,1688.0,HIIT,10.9,3.5,4,3,31.44
|
93 |
+
52,Female,61.5,1.69,160,152,63,1.8,1231.0,Cardio,15.5,2.7,4,3,21.53
|
94 |
+
52,Male,74.0,1.63,174,150,50,1.26,936.0,Cardio,25.7,3.7,3,2,27.85
|
95 |
+
50,Female,56.4,1.59,185,163,74,1.26,924.0,HIIT,34.3,2.6,3,1,22.31
|
96 |
+
22,Male,102.6,1.84,163,153,65,1.25,1052.0,Strength,20.5,2.7,3,2,30.3
|
97 |
+
59,Female,54.6,1.57,164,169,64,0.58,441.0,Cardio,29.2,2.3,3,1,22.15
|
98 |
+
56,Male,129.0,1.78,194,126,64,1.29,805.0,Yoga,27.1,2.7,2,1,40.71
|
99 |
+
58,Male,103.5,1.66,172,168,61,1.33,1106.0,Cardio,24.6,3.1,3,1,37.56
|
100 |
+
45,Female,59.4,1.51,169,142,65,1.15,735.0,Strength,33.1,1.9,4,2,26.05
|
101 |
+
24,Female,60.1,1.79,170,165,63,1.97,1625.0,Cardio,15.9,2.7,4,3,18.76
|
102 |
+
26,Male,77.7,1.62,177,126,73,1.16,804.0,Yoga,29.6,3.0,3,2,29.61
|
103 |
+
25,Female,41.2,1.62,193,144,64,1.49,1073.0,Yoga,28.9,2.1,4,2,15.7
|
104 |
+
29,Male,58.6,1.61,198,122,72,1.2,805.0,Yoga,23.4,2.0,3,2,22.61
|
105 |
+
51,Male,109.3,1.78,182,157,64,0.54,420.0,Strength,28.7,3.3,3,1,34.5
|
106 |
+
50,Male,69.6,1.96,166,139,68,0.97,667.0,Strength,25.6,2.0,3,1,18.12
|
107 |
+
40,Female,56.2,1.79,198,153,57,1.79,1369.0,Yoga,17.6,2.7,5,3,17.54
|
108 |
+
41,Male,71.7,1.96,162,168,51,0.51,424.0,Yoga,27.3,2.5,2,1,18.66
|
109 |
+
54,Male,86.0,1.93,171,163,51,1.74,1404.0,Strength,12.9,3.5,5,3,23.09
|
110 |
+
52,Female,79.4,1.59,166,163,59,1.39,1020.0,Strength,26.6,1.5,3,2,31.41
|
111 |
+
57,Female,78.4,1.62,185,149,52,1.01,677.0,Strength,31.7,2.0,4,2,29.87
|
112 |
+
39,Female,55.4,1.6,192,136,72,1.44,979.0,HIIT,26.3,1.6,3,2,21.64
|
113 |
+
44,Female,61.7,1.55,196,129,66,1.41,819.0,Strength,33.1,2.6,4,2,25.68
|
114 |
+
52,Male,85.5,1.82,174,154,57,1.78,1357.0,Yoga,14.9,3.5,4,3,25.81
|
115 |
+
18,Male,87.6,1.93,161,139,72,1.72,1315.0,HIIT,11.9,3.5,4,3,23.52
|
116 |
+
52,Male,82.4,1.72,166,137,53,1.01,685.0,Strength,24.4,2.7,4,2,27.85
|
117 |
+
54,Male,67.0,1.68,191,164,63,0.55,446.0,Yoga,20.5,2.8,3,1,23.74
|
118 |
+
31,Female,42.3,1.6,163,163,70,1.09,888.0,Cardio,25.1,1.9,3,2,16.52
|
119 |
+
20,Male,82.7,1.99,179,146,59,1.69,1357.0,HIIT,14.6,3.5,5,3,20.88
|
120 |
+
18,Male,92.4,1.74,195,168,50,1.41,1303.0,Yoga,21.3,3.1,2,1,30.52
|
121 |
+
22,Female,63.2,1.54,191,155,53,1.02,790.0,Cardio,29.5,2.4,4,2,26.65
|
122 |
+
43,Male,82.7,1.85,187,142,50,1.22,858.0,Yoga,28.2,3.1,4,2,24.16
|
123 |
+
31,Male,86.6,1.76,172,151,66,1.29,1071.0,Strength,28.9,3.3,3,2,27.96
|
124 |
+
56,Male,129.5,1.95,160,129,66,1.0,639.0,Strength,25.2,3.5,2,1,34.06
|
125 |
+
44,Male,98.0,1.83,194,130,56,1.28,824.0,Cardio,25.7,3.5,4,2,29.26
|
126 |
+
26,Male,86.2,1.68,189,157,72,1.97,1701.0,Strength,13.3,3.5,5,3,30.54
|
127 |
+
32,Male,78.6,1.62,195,125,69,1.28,880.0,Yoga,29.6,3.1,3,1,29.95
|
128 |
+
32,Female,59.0,1.66,184,160,64,0.51,408.0,Cardio,31.0,1.8,2,1,21.41
|
129 |
+
43,Female,57.3,1.79,175,166,62,1.98,1479.0,Yoga,17.8,2.7,4,3,17.88
|
130 |
+
59,Male,122.3,1.89,178,153,51,0.66,500.0,Yoga,20.1,3.1,3,1,34.24
|
131 |
+
30,Male,85.3,1.95,160,155,68,1.61,1373.0,Yoga,10.4,3.5,5,3,22.43
|
132 |
+
49,Female,45.2,1.74,164,156,73,1.24,870.0,Strength,30.8,2.1,3,2,14.93
|
133 |
+
56,Male,55.6,1.92,181,136,62,0.68,458.0,Strength,29.4,3.2,3,1,15.08
|
134 |
+
49,Male,82.8,1.95,183,159,73,1.91,1503.0,Yoga,14.3,3.5,5,3,21.78
|
135 |
+
21,Male,125.2,1.66,196,159,60,1.38,1207.0,HIIT,29.8,3.4,3,2,45.43
|
136 |
+
47,Female,58.5,1.79,195,131,71,1.42,837.0,Yoga,30.3,2.4,4,2,18.26
|
137 |
+
54,Male,86.1,1.95,195,140,64,1.17,811.0,Yoga,27.9,3.4,2,1,22.64
|
138 |
+
40,Female,63.5,1.61,163,159,59,1.31,1041.0,Cardio,33.4,1.6,3,2,24.5
|
139 |
+
56,Male,69.3,1.68,195,138,58,0.66,451.0,Yoga,26.5,2.1,2,1,24.55
|
140 |
+
32,Female,70.5,1.62,177,122,58,1.24,756.0,Strength,28.4,1.8,2,1,26.86
|
141 |
+
46,Female,60.1,1.65,175,137,69,1.69,1042.0,Cardio,17.3,2.7,4,3,22.08
|
142 |
+
53,Male,94.1,1.95,177,138,50,0.89,608.0,HIIT,28.6,3.5,3,1,24.75
|
143 |
+
30,Female,79.2,1.62,181,166,66,1.26,1046.0,Cardio,28.0,2.5,4,2,30.18
|
144 |
+
49,Male,115.3,1.91,161,125,61,1.38,854.0,HIIT,29.2,3.2,2,1,31.61
|
145 |
+
24,Female,62.9,1.79,180,135,59,1.42,958.0,Cardio,27.3,2.3,4,2,19.63
|
146 |
+
39,Male,62.0,1.64,195,127,54,0.97,678.0,Cardio,27.5,3.2,3,1,23.05
|
147 |
+
45,Male,88.5,1.78,198,167,67,1.53,1265.0,HIIT,13.2,3.5,4,3,27.93
|
148 |
+
19,Female,73.9,1.77,198,137,64,1.28,877.0,Strength,32.5,2.6,3,2,23.59
|
149 |
+
59,Male,50.3,1.95,188,167,55,1.07,885.0,Strength,24.4,3.4,3,1,13.23
|
150 |
+
23,Male,83.1,1.8,185,162,56,0.7,624.0,Strength,29.3,3.1,3,1,25.65
|
151 |
+
45,Female,65.1,1.78,180,158,66,1.46,1038.0,Cardio,31.3,2.3,3,1,20.55
|
152 |
+
45,Male,46.6,1.79,176,168,55,1.46,1214.0,Yoga,22.9,2.4,3,2,14.54
|
153 |
+
37,Male,103.5,1.89,175,168,57,0.54,499.0,Cardio,26.4,3.1,2,1,28.97
|
154 |
+
47,Female,61.9,1.54,190,131,61,1.95,1150.0,Yoga,16.4,2.7,4,3,26.1
|
155 |
+
28,Female,52.0,1.61,168,164,70,1.32,1082.0,Yoga,27.9,2.0,3,2,20.06
|
156 |
+
45,Male,113.4,1.71,190,129,63,0.83,530.0,Strength,24.0,2.3,2,1,38.78
|
157 |
+
42,Male,62.9,1.98,173,126,61,1.42,886.0,Yoga,28.5,3.4,4,2,16.04
|
158 |
+
56,Female,40.4,1.8,196,165,72,1.23,913.0,Cardio,30.0,2.1,4,2,12.47
|
159 |
+
50,Female,67.1,1.75,161,120,59,0.67,362.0,Cardio,31.8,2.7,3,1,21.91
|
160 |
+
18,Male,70.0,1.61,173,168,71,1.3,1201.0,Strength,23.9,2.5,2,1,27.01
|
161 |
+
44,Female,69.5,1.75,192,155,69,1.02,711.0,HIIT,27.6,2.1,3,1,22.69
|
162 |
+
30,Male,107.9,1.66,194,140,64,1.08,832.0,Cardio,29.5,2.8,3,2,39.16
|
163 |
+
58,Male,109.0,1.91,198,156,56,1.49,1151.0,Yoga,26.0,2.2,3,2,29.88
|
164 |
+
20,Male,101.0,1.91,179,143,58,1.36,1070.0,Cardio,29.3,2.7,3,2,27.69
|
165 |
+
56,Male,88.5,1.85,161,144,59,1.57,1119.0,Cardio,11.0,3.5,4,3,25.86
|
166 |
+
23,Male,80.9,1.8,178,126,59,1.55,1074.0,Cardio,10.7,3.5,4,3,24.97
|
167 |
+
25,Female,43.1,1.62,196,161,65,1.04,837.0,HIIT,33.6,1.8,4,2,16.42
|
168 |
+
44,Female,59.1,1.52,177,136,56,1.58,967.0,Yoga,18.4,2.7,5,3,25.58
|
169 |
+
26,Female,54.0,1.53,175,148,54,1.14,844.0,Strength,26.9,1.7,3,1,23.07
|
170 |
+
54,Female,72.3,1.78,163,149,72,1.27,852.0,Cardio,27.7,1.8,2,1,22.82
|
171 |
+
50,Male,51.1,1.98,171,126,52,0.92,574.0,Yoga,28.0,2.4,2,1,13.03
|
172 |
+
59,Male,89.4,1.72,188,152,67,1.08,813.0,Yoga,24.5,3.2,3,1,30.22
|
173 |
+
41,Male,51.5,1.8,166,126,60,1.09,680.0,Strength,26.7,2.1,4,2,15.9
|
174 |
+
32,Male,87.9,1.88,173,143,64,1.52,1195.0,Cardio,11.6,3.5,5,3,24.87
|
175 |
+
49,Female,42.0,1.52,171,130,70,1.1,644.0,HIIT,28.8,2.2,3,1,18.18
|
176 |
+
49,Male,79.2,1.72,194,128,69,1.46,925.0,Yoga,29.9,3.3,3,1,26.77
|
177 |
+
41,Male,64.8,1.71,164,131,54,1.2,778.0,Strength,22.5,2.8,3,2,22.16
|
178 |
+
58,Female,63.0,1.78,176,154,73,1.58,1095.0,HIIT,17.5,2.7,4,3,19.88
|
179 |
+
29,Female,56.2,1.77,191,123,61,0.68,418.0,Yoga,33.4,2.6,3,1,17.94
|
180 |
+
56,Female,52.9,1.64,169,155,53,1.1,767.0,Cardio,27.4,2.3,3,2,19.67
|
181 |
+
19,Female,49.0,1.69,176,147,64,1.05,772.0,Yoga,29.2,2.4,3,1,17.16
|
182 |
+
20,Male,128.2,1.84,164,132,58,0.83,603.0,HIIT,26.2,2.3,3,1,37.87
|
183 |
+
54,Male,83.6,1.86,168,142,56,1.54,1082.0,HIIT,12.4,3.5,5,3,24.16
|
184 |
+
34,Female,56.2,1.77,192,138,59,1.81,1249.0,Cardio,17.3,2.7,5,3,17.94
|
185 |
+
19,Male,87.8,1.78,195,161,72,1.28,1133.0,Cardio,23.6,3.3,2,1,27.71
|
186 |
+
19,Male,85.9,1.85,195,156,62,1.66,1424.0,Strength,12.9,3.5,4,3,25.1
|
187 |
+
45,Male,51.1,1.87,177,158,57,1.44,1126.0,Cardio,26.2,3.4,4,2,14.61
|
188 |
+
40,Female,57.4,1.71,168,143,61,1.87,1337.0,Strength,18.3,2.7,5,3,19.63
|
189 |
+
54,Male,114.9,1.92,188,135,71,1.2,802.0,HIIT,20.7,2.6,4,2,31.17
|
190 |
+
49,Female,62.1,1.66,173,152,73,1.37,937.0,HIIT,31.3,1.8,3,2,22.54
|
191 |
+
50,Male,57.1,1.91,184,131,68,1.09,707.0,Yoga,29.5,2.7,4,2,15.65
|
192 |
+
18,Male,68.1,1.8,174,153,50,1.1,926.0,Yoga,25.4,3.3,4,2,21.02
|
193 |
+
36,Male,69.2,1.65,165,126,65,1.23,852.0,Strength,27.2,2.7,3,1,25.42
|
194 |
+
19,Female,65.2,1.52,188,130,71,1.23,800.0,Cardio,30.6,2.4,3,1,28.22
|
195 |
+
43,Male,108.6,1.73,174,150,66,1.33,988.0,Cardio,28.5,2.2,2,1,36.29
|
196 |
+
49,Female,40.0,1.65,188,148,74,1.03,686.0,Yoga,34.3,2.5,3,2,14.69
|
197 |
+
23,Female,41.9,1.58,163,132,67,0.56,370.0,HIIT,26.8,1.8,3,1,16.78
|
198 |
+
49,Female,68.3,1.52,177,150,60,1.45,979.0,Strength,29.4,1.8,4,2,29.56
|
199 |
+
21,Male,88.4,1.6,198,121,67,1.71,1138.0,HIIT,12.0,3.5,4,3,34.53
|
200 |
+
28,Male,66.0,1.9,175,158,56,1.18,1025.0,HIIT,24.1,3.0,3,1,18.28
|
201 |
+
34,Male,71.9,1.64,170,134,67,1.26,929.0,Cardio,21.3,2.1,4,2,26.73
|
202 |
+
55,Male,75.6,1.71,173,130,57,1.03,663.0,Strength,28.1,2.0,4,2,25.85
|
203 |
+
41,Female,63.4,1.59,162,153,55,1.84,1267.0,HIIT,15.2,2.7,5,3,25.08
|
204 |
+
22,Female,71.6,1.77,197,158,56,1.49,1177.0,Yoga,30.3,1.8,3,1,22.85
|
205 |
+
51,Female,57.4,1.77,177,123,72,1.08,598.0,Yoga,31.6,2.1,4,2,18.32
|
206 |
+
23,Male,83.8,1.99,179,130,71,1.79,1280.0,Cardio,11.0,3.5,4,3,21.16
|
207 |
+
39,Female,55.9,1.71,184,148,59,1.95,1443.0,Yoga,19.5,2.7,5,3,19.12
|
208 |
+
28,Male,87.0,1.76,197,121,60,1.2,799.0,Yoga,28.4,3.5,3,2,28.09
|
209 |
+
33,Female,65.3,1.71,172,135,74,1.18,796.0,HIIT,29.7,2.5,4,2,22.33
|
210 |
+
50,Male,45.4,1.67,163,158,62,1.37,1071.0,Yoga,24.1,2.8,4,2,16.28
|
211 |
+
26,Male,87.1,1.87,173,132,58,1.71,1241.0,Yoga,11.2,3.5,4,3,24.91
|
212 |
+
23,Female,78.6,1.73,192,156,56,1.47,1147.0,HIIT,32.3,1.5,4,2,26.26
|
213 |
+
33,Female,78.0,1.71,187,136,58,1.08,734.0,Cardio,26.3,2.1,3,1,26.67
|
214 |
+
46,Female,58.0,1.53,196,140,62,1.83,1153.0,Cardio,18.4,2.7,4,3,24.78
|
215 |
+
20,Female,71.3,1.69,167,163,52,1.28,1043.0,Strength,33.4,2.3,3,2,24.96
|
216 |
+
37,Male,49.1,1.74,193,138,52,1.11,842.0,Yoga,22.3,2.6,3,2,16.22
|
217 |
+
53,Female,78.3,1.65,164,126,50,1.24,703.0,HIIT,33.7,1.6,3,1,28.76
|
218 |
+
36,Female,57.3,1.64,164,157,70,1.13,887.0,Strength,25.3,1.8,4,2,21.3
|
219 |
+
43,Female,48.4,1.61,190,127,69,1.28,732.0,Cardio,34.1,2.4,2,1,18.67
|
220 |
+
20,Male,76.4,1.62,168,132,51,1.35,980.0,Cardio,21.2,2.6,4,2,29.11
|
221 |
+
36,Male,110.2,1.77,191,156,74,1.19,1021.0,HIIT,26.5,3.4,2,1,35.18
|
222 |
+
37,Female,72.9,1.76,192,121,52,1.21,732.0,Strength,27.5,1.9,3,2,23.53
|
223 |
+
49,Male,82.1,1.86,162,160,64,1.87,1481.0,Strength,14.2,3.5,4,3,23.73
|
224 |
+
24,Female,58.9,1.76,189,130,73,0.63,410.0,HIIT,30.1,1.7,3,1,19.01
|
225 |
+
58,Male,82.2,1.87,171,143,55,1.57,1111.0,HIIT,10.7,3.5,4,3,23.51
|
226 |
+
50,Male,96.7,1.72,188,125,62,1.46,903.0,Strength,25.7,2.7,3,2,32.69
|
227 |
+
57,Male,81.4,1.86,162,145,70,1.8,1292.0,Cardio,12.0,3.5,5,3,23.53
|
228 |
+
56,Male,107.8,1.73,185,126,50,1.09,680.0,Yoga,26.6,2.8,3,2,36.02
|
229 |
+
35,Female,65.8,1.62,189,158,69,1.0,790.0,Cardio,33.8,1.5,4,2,25.07
|
230 |
+
57,Female,68.5,1.56,168,138,68,1.45,900.0,HIIT,29.1,1.6,4,2,28.15
|
231 |
+
18,Female,63.9,1.59,185,125,50,1.87,1169.0,Strength,16.4,2.7,4,3,25.28
|
232 |
+
28,Male,76.3,1.62,161,162,70,1.16,1034.0,Strength,20.1,2.3,3,2,29.07
|
233 |
+
45,Female,44.5,1.65,162,148,71,1.44,959.0,Yoga,30.7,1.6,3,1,16.35
|
234 |
+
42,Female,50.7,1.75,163,162,51,1.29,940.0,Strength,29.0,1.9,3,2,16.56
|
235 |
+
40,Female,55.1,1.61,184,158,64,1.55,1224.0,Yoga,16.9,2.7,4,3,21.26
|
236 |
+
48,Male,73.7,1.61,172,121,63,1.36,815.0,Cardio,21.8,3.6,4,2,28.43
|
237 |
+
47,Male,55.6,1.77,198,138,68,1.2,820.0,Cardio,24.3,2.9,4,2,17.75
|
238 |
+
59,Male,86.9,1.76,194,123,60,1.13,688.0,Strength,29.8,3.1,3,2,28.05
|
239 |
+
52,Female,60.3,1.68,182,125,64,1.6,900.0,Strength,16.5,2.7,4,3,21.36
|
240 |
+
24,Female,40.4,1.64,168,168,55,0.99,832.0,HIIT,31.0,1.9,2,1,15.02
|
241 |
+
33,Female,78.5,1.66,161,156,69,1.29,1006.0,HIIT,32.8,1.9,4,2,28.49
|
242 |
+
43,Male,102.6,1.72,190,147,58,0.82,597.0,Strength,27.5,2.0,2,1,34.68
|
243 |
+
19,Male,110.8,1.91,161,149,54,1.31,1074.0,Strength,23.3,2.9,2,1,30.37
|
244 |
+
18,Female,60.9,1.79,191,126,69,1.11,699.0,Cardio,31.1,2.1,2,1,19.01
|
245 |
+
29,Male,55.7,1.61,177,128,51,1.41,993.0,Strength,28.7,2.3,3,1,21.49
|
246 |
+
22,Male,110.5,1.92,172,144,55,1.16,919.0,HIIT,20.2,3.3,3,2,29.98
|
247 |
+
54,Male,55.2,1.71,164,152,67,0.77,579.0,Cardio,24.4,2.8,2,1,18.88
|
248 |
+
49,Male,46.5,1.72,169,120,72,1.4,832.0,Yoga,22.2,2.6,4,2,15.72
|
249 |
+
26,Female,70.9,1.66,184,125,68,0.81,506.0,HIIT,28.9,1.7,3,1,25.73
|
250 |
+
58,Male,74.6,1.75,193,137,58,1.09,739.0,HIIT,24.2,2.9,2,1,24.36
|
251 |
+
52,Male,45.1,1.72,196,129,70,0.93,594.0,Cardio,27.5,3.3,2,1,15.24
|
252 |
+
36,Male,99.9,1.99,189,147,73,1.33,1075.0,Yoga,20.9,2.5,3,1,25.23
|
253 |
+
33,Male,117.0,1.61,166,130,55,1.04,744.0,HIIT,25.1,2.4,3,2,45.14
|
254 |
+
20,Female,75.9,1.73,165,152,63,1.39,1056.0,Strength,30.6,2.1,4,2,25.36
|
255 |
+
37,Female,71.2,1.64,162,120,73,1.11,666.0,HIIT,29.9,1.7,3,2,26.47
|
256 |
+
41,Male,78.8,1.72,172,132,62,1.01,660.0,Cardio,27.3,3.1,4,2,26.64
|
257 |
+
50,Male,50.6,1.69,162,156,60,1.31,1012.0,Cardio,23.8,3.0,2,1,17.72
|
258 |
+
41,Male,82.5,1.79,185,139,61,1.69,1163.0,Cardio,14.7,3.5,4,3,25.75
|
259 |
+
28,Male,108.5,1.79,183,120,68,1.33,878.0,HIIT,24.8,2.1,4,2,33.86
|
260 |
+
25,Male,49.9,1.98,165,122,68,1.15,772.0,Yoga,25.7,2.1,3,2,12.73
|
261 |
+
53,Male,125.1,1.91,171,137,70,0.52,353.0,Strength,28.3,3.1,2,1,34.29
|
262 |
+
55,Female,79.7,1.66,195,160,68,1.06,763.0,Cardio,27.8,1.9,2,1,28.92
|
263 |
+
57,Male,126.8,1.63,161,133,73,0.96,632.0,Yoga,20.8,2.1,2,1,47.72
|
264 |
+
37,Female,54.6,1.57,170,150,62,1.31,982.0,Strength,32.1,2.4,3,1,22.15
|
265 |
+
52,Female,47.8,1.54,198,146,63,1.34,880.0,Cardio,29.8,1.9,3,2,20.16
|
266 |
+
42,Male,97.9,1.91,193,136,73,1.01,680.0,Strength,29.0,2.8,3,2,26.84
|
267 |
+
52,Female,63.1,1.54,185,165,67,1.36,1010.0,Strength,34.8,1.8,3,2,26.61
|
268 |
+
42,Female,72.4,1.69,177,148,61,1.07,713.0,Yoga,29.0,2.3,3,2,25.35
|
269 |
+
46,Female,58.9,1.7,180,155,53,1.52,1060.0,Strength,17.1,2.7,4,3,20.38
|
270 |
+
35,Female,50.4,1.6,195,156,59,1.03,803.0,Cardio,29.1,1.9,4,2,19.69
|
271 |
+
35,Female,64.2,1.59,199,145,66,1.63,1182.0,Yoga,16.6,2.7,5,3,25.39
|
272 |
+
19,Female,58.8,1.77,181,136,53,1.4,952.0,HIIT,32.8,2.7,2,1,18.77
|
273 |
+
52,Male,105.2,1.62,189,141,61,1.36,949.0,HIIT,27.6,3.2,3,1,40.09
|
274 |
+
33,Female,45.9,1.5,189,144,62,0.92,662.0,Yoga,29.8,1.7,3,1,20.4
|
275 |
+
58,Female,65.2,1.63,167,121,53,1.12,610.0,HIIT,25.4,2.0,3,2,24.54
|
276 |
+
53,Female,56.3,1.79,193,141,59,1.52,964.0,Strength,16.5,2.7,5,3,17.57
|
277 |
+
50,Male,90.0,1.7,168,124,74,0.81,497.0,Cardio,22.9,2.7,2,1,31.14
|
278 |
+
21,Female,60.0,1.7,179,123,52,1.97,1212.0,Strength,19.1,2.7,5,3,20.76
|
279 |
+
50,Male,51.5,1.71,199,155,64,1.48,1136.0,Yoga,20.9,2.9,2,1,17.61
|
280 |
+
31,Female,63.1,1.64,184,125,51,1.54,962.0,Cardio,19.0,2.7,4,3,23.46
|
281 |
+
38,Male,91.5,1.77,178,140,74,0.8,616.0,Yoga,26.7,3.4,2,1,29.21
|
282 |
+
37,Male,48.7,1.67,164,132,74,1.39,1009.0,Yoga,27.3,3.0,2,1,17.46
|
283 |
+
25,Female,57.8,1.56,170,156,66,1.35,1053.0,Yoga,29.3,1.6,3,2,23.75
|
284 |
+
24,Female,42.0,1.75,174,144,55,0.83,598.0,Strength,31.8,2.3,3,1,13.71
|
285 |
+
20,Male,128.4,1.92,167,145,57,0.63,502.0,Cardio,26.1,2.0,2,1,34.83
|
286 |
+
34,Female,74.2,1.57,178,158,52,1.47,1161.0,Cardio,32.7,2.4,3,1,30.1
|
287 |
+
50,Male,89.6,1.68,182,139,74,1.79,1232.0,Cardio,12.2,3.5,5,3,31.75
|
288 |
+
29,Male,125.9,2.0,186,152,67,1.36,1137.0,Strength,24.7,3.1,4,2,31.48
|
289 |
+
39,Male,105.5,1.99,199,133,71,0.81,593.0,HIIT,26.4,2.5,2,1,26.64
|
290 |
+
39,Male,93.4,1.7,191,155,50,1.1,938.0,Strength,21.1,2.5,4,2,32.32
|
291 |
+
47,Male,82.1,1.84,185,136,65,1.37,922.0,Strength,24.4,3.4,4,2,24.25
|
292 |
+
55,Female,42.9,1.69,186,140,56,0.9,567.0,Yoga,34.7,2.4,2,1,15.02
|
293 |
+
55,Male,128.4,1.68,178,165,52,1.13,923.0,Cardio,20.4,2.6,4,2,45.49
|
294 |
+
25,Male,112.4,1.96,188,135,72,1.42,1054.0,Cardio,23.2,2.5,2,1,29.26
|
295 |
+
44,Female,77.7,1.79,198,165,53,1.41,1047.0,HIIT,28.1,2.2,3,1,24.25
|
296 |
+
44,Male,89.3,1.99,192,135,58,1.4,936.0,HIIT,26.3,2.0,4,2,22.55
|
297 |
+
51,Female,70.3,1.55,178,139,54,1.4,876.0,Yoga,26.1,1.6,3,1,29.26
|
298 |
+
38,Female,59.1,1.72,196,148,68,1.07,792.0,Cardio,31.3,1.7,3,2,19.98
|
299 |
+
47,Female,49.9,1.69,178,147,64,1.48,979.0,HIIT,26.0,1.7,3,2,17.47
|
300 |
+
50,Male,101.7,1.67,192,127,57,0.53,333.0,HIIT,20.9,2.9,2,1,36.47
|
301 |
+
45,Male,93.0,1.91,175,143,55,1.03,729.0,Cardio,27.3,3.7,3,2,25.49
|
302 |
+
50,Male,87.4,1.6,182,122,67,0.77,465.0,Strength,23.2,3.1,2,1,34.14
|
303 |
+
22,Female,55.1,1.61,166,144,68,1.62,1166.0,HIIT,19.9,2.7,4,3,21.26
|
304 |
+
36,Male,123.7,1.69,185,138,73,1.3,987.0,Cardio,20.4,2.1,4,2,43.31
|
305 |
+
21,Female,61.3,1.57,191,152,64,1.94,1474.0,HIIT,17.2,2.7,4,3,24.87
|
306 |
+
52,Male,72.3,1.94,171,121,56,1.46,874.0,Yoga,21.1,2.9,3,2,19.21
|
307 |
+
34,Female,69.2,1.53,167,134,59,1.36,911.0,HIIT,28.5,2.1,2,1,29.56
|
308 |
+
45,Male,81.4,1.61,164,141,55,1.14,796.0,Cardio,30.0,2.2,4,2,31.4
|
309 |
+
47,Male,84.8,1.86,187,129,63,1.85,1181.0,HIIT,14.4,3.5,5,3,24.51
|
310 |
+
46,Male,55.1,1.72,164,137,66,1.43,970.0,Yoga,20.5,3.6,3,2,18.62
|
311 |
+
23,Female,59.0,1.78,185,141,58,1.67,1177.0,Yoga,17.8,2.7,5,3,18.62
|
312 |
+
52,Female,64.9,1.51,164,165,68,1.83,1359.0,HIIT,18.2,2.7,4,3,28.46
|
313 |
+
58,Male,109.7,1.75,181,168,54,1.01,840.0,HIIT,22.1,2.7,2,1,35.82
|
314 |
+
54,Male,78.4,1.9,174,146,72,0.81,585.0,Yoga,21.5,3.7,2,1,21.72
|
315 |
+
41,Female,76.7,1.79,172,132,56,1.4,832.0,Yoga,34.0,2.0,4,2,23.94
|
316 |
+
46,Female,63.1,1.61,187,152,68,1.0,684.0,Strength,34.7,2.2,4,2,24.34
|
317 |
+
48,Female,62.9,1.58,192,124,69,1.98,1105.0,Strength,20.0,2.7,4,3,25.2
|
318 |
+
52,Male,85.6,1.74,182,145,56,1.84,1321.0,Yoga,13.9,3.5,4,3,28.27
|
319 |
+
50,Female,66.3,1.57,192,132,73,1.25,742.0,HIIT,31.6,1.6,2,1,26.9
|
320 |
+
38,Male,61.3,1.97,177,146,51,1.37,1100.0,Cardio,23.5,2.8,3,1,15.8
|
321 |
+
49,Female,44.1,1.65,189,133,74,1.16,694.0,HIIT,26.7,1.8,4,2,16.2
|
322 |
+
40,Male,63.8,1.62,185,143,72,1.3,1022.0,HIIT,20.8,3.4,2,1,24.31
|
323 |
+
50,Female,55.4,1.55,175,122,65,1.85,1016.0,Strength,18.5,2.7,4,3,23.06
|
324 |
+
20,Female,74.7,1.58,172,166,62,1.04,863.0,Strength,32.8,2.4,3,2,29.92
|
325 |
+
35,Female,78.0,1.67,198,168,57,1.13,949.0,Strength,33.3,2.5,4,2,27.97
|
326 |
+
42,Female,57.5,1.67,192,149,55,1.14,764.0,Yoga,34.1,2.4,2,1,20.62
|
327 |
+
59,Female,60.7,1.73,185,154,55,1.03,714.0,Yoga,33.8,2.5,3,2,20.28
|
328 |
+
48,Male,69.0,1.74,160,167,58,1.48,1223.0,HIIT,30.0,2.3,3,2,22.79
|
329 |
+
20,Female,75.8,1.78,197,133,53,1.42,944.0,HIIT,27.4,2.0,4,2,23.92
|
330 |
+
57,Female,75.7,1.63,161,131,60,0.69,407.0,Cardio,32.6,2.3,3,1,28.49
|
331 |
+
41,Female,71.2,1.64,165,147,54,1.42,939.0,HIIT,30.9,2.3,3,2,26.47
|
332 |
+
49,Male,85.0,1.68,197,163,74,1.82,1468.0,HIIT,11.3,3.5,4,3,30.12
|
333 |
+
39,Female,63.6,1.56,183,148,66,1.22,903.0,Strength,34.8,2.4,2,1,26.13
|
334 |
+
40,Male,73.2,1.94,177,162,69,0.81,722.0,Strength,29.0,2.4,2,1,19.45
|
335 |
+
19,Female,48.3,1.52,186,136,56,0.96,653.0,Strength,26.3,1.6,2,1,20.91
|
336 |
+
44,Female,42.8,1.78,167,159,64,1.49,1066.0,Strength,25.3,2.6,3,2,13.51
|
337 |
+
59,Male,88.1,1.76,187,168,74,1.35,1123.0,Strength,26.9,3.0,3,2,28.44
|
338 |
+
19,Female,72.4,1.75,169,140,64,1.2,840.0,Cardio,31.0,1.7,4,2,23.64
|
339 |
+
43,Male,73.2,1.88,176,142,63,1.17,822.0,Cardio,29.4,3.3,3,1,20.71
|
340 |
+
34,Male,110.5,1.86,188,139,62,1.42,1086.0,Cardio,22.3,3.6,2,1,31.94
|
341 |
+
57,Female,46.1,1.76,165,130,60,1.44,842.0,Strength,25.8,1.7,3,2,14.88
|
342 |
+
50,Male,90.8,1.71,173,153,62,1.07,810.0,Yoga,22.6,3.4,4,2,31.05
|
343 |
+
26,Female,59.3,1.51,181,129,71,1.7,1096.0,Strength,15.1,2.7,5,3,26.01
|
344 |
+
56,Female,45.1,1.73,165,129,73,0.83,482.0,Strength,25.4,2.6,3,1,15.07
|
345 |
+
46,Male,45.0,1.77,185,162,58,1.48,1187.0,Cardio,29.1,3.6,3,2,14.36
|
346 |
+
59,Male,89.4,1.62,198,125,59,1.43,885.0,Strength,23.5,3.6,3,2,34.06
|
347 |
+
43,Male,127.7,1.69,171,155,53,1.14,875.0,Cardio,24.1,2.9,3,2,44.71
|
348 |
+
52,Male,70.9,1.72,194,143,66,1.31,927.0,Strength,20.2,2.6,3,2,23.97
|
349 |
+
42,Female,49.2,1.5,173,131,63,1.15,678.0,HIIT,27.7,1.5,3,2,21.87
|
350 |
+
41,Female,62.3,1.79,181,162,73,1.99,1451.0,Yoga,19.0,2.7,5,3,19.44
|
351 |
+
30,Male,64.1,1.87,182,142,67,0.64,500.0,Yoga,26.2,2.1,2,1,18.33
|
352 |
+
24,Female,69.7,1.75,166,146,60,1.41,1029.0,Cardio,32.5,2.0,3,1,22.76
|
353 |
+
53,Female,56.9,1.59,199,164,65,1.49,1100.0,HIIT,29.5,2.0,3,2,22.51
|
354 |
+
37,Female,53.0,1.71,184,156,50,1.13,881.0,Yoga,28.1,1.7,4,2,18.13
|
355 |
+
18,Female,72.7,1.55,172,125,56,0.84,525.0,Cardio,29.8,2.0,3,1,30.26
|
356 |
+
25,Male,76.5,1.96,180,120,59,0.67,442.0,Strength,23.2,2.3,3,1,19.91
|
357 |
+
33,Male,113.6,1.99,169,125,58,1.38,949.0,Strength,28.4,3.4,2,1,28.69
|
358 |
+
31,Female,62.5,1.62,168,169,74,1.56,1318.0,HIIT,16.5,2.7,4,3,23.81
|
359 |
+
29,Male,95.2,1.86,174,141,52,0.64,496.0,Yoga,26.6,2.5,2,1,27.52
|
360 |
+
40,Male,51.7,1.82,161,160,71,0.9,792.0,Strength,21.4,3.0,3,1,15.61
|
361 |
+
32,Male,105.3,1.67,184,143,72,0.57,448.0,Cardio,26.9,2.9,3,1,37.76
|
362 |
+
45,Female,71.2,1.68,172,144,63,1.37,888.0,Strength,34.1,1.6,3,1,25.23
|
363 |
+
51,Female,78.1,1.51,193,134,74,0.92,555.0,Strength,31.1,2.6,3,1,34.25
|
364 |
+
19,Female,50.6,1.68,193,145,64,1.21,877.0,Yoga,30.6,2.1,3,2,17.93
|
365 |
+
49,Male,70.2,1.89,194,127,51,0.7,440.0,Yoga,29.6,2.6,3,1,19.65
|
366 |
+
40,Female,62.6,1.53,197,143,73,1.93,1380.0,Cardio,18.1,2.7,5,3,26.74
|
367 |
+
39,Female,60.6,1.65,162,167,63,0.92,768.0,HIIT,27.6,1.7,3,1,22.26
|
368 |
+
42,Male,76.4,1.97,165,157,65,1.14,886.0,HIIT,22.9,2.6,3,2,19.69
|
369 |
+
39,Female,63.3,1.71,178,125,56,1.88,1175.0,Strength,18.5,2.7,4,3,21.65
|
370 |
+
39,Female,68.6,1.64,162,154,53,1.33,1024.0,Cardio,32.4,1.5,3,2,25.51
|
371 |
+
59,Male,123.3,1.88,177,161,67,1.3,1036.0,HIIT,23.0,2.6,4,2,34.89
|
372 |
+
23,Male,107.0,1.94,198,120,73,1.35,891.0,HIIT,23.5,2.9,2,1,28.43
|
373 |
+
32,Male,68.3,1.92,168,165,54,1.42,1289.0,Strength,29.9,3.5,2,1,18.53
|
374 |
+
54,Female,47.8,1.6,171,155,55,1.19,830.0,Cardio,26.0,2.3,4,2,18.67
|
375 |
+
50,Female,58.4,1.79,164,131,56,1.6,943.0,HIIT,17.0,2.7,4,3,18.23
|
376 |
+
25,Female,74.3,1.71,162,157,64,1.43,1123.0,Yoga,25.6,1.6,3,2,25.41
|
377 |
+
22,Male,106.8,1.82,170,130,50,1.0,715.0,Yoga,28.2,2.3,4,2,32.24
|
378 |
+
56,Male,125.5,1.8,189,131,73,1.26,817.0,Strength,20.9,2.7,4,2,38.73
|
379 |
+
21,Female,55.2,1.55,163,161,53,1.37,1103.0,Strength,31.7,1.7,4,2,22.98
|
380 |
+
23,Female,71.4,1.72,164,169,74,1.25,1056.0,Strength,25.6,1.5,2,1,24.13
|
381 |
+
49,Male,77.7,1.61,160,158,50,1.03,806.0,Strength,26.7,3.4,3,2,29.98
|
382 |
+
47,Male,88.4,1.6,186,126,60,1.86,1160.0,HIIT,14.2,3.5,5,3,34.53
|
383 |
+
52,Male,104.8,1.99,187,130,67,0.93,598.0,Cardio,24.0,2.0,2,1,26.46
|
384 |
+
57,Male,82.2,1.69,188,155,63,1.15,882.0,Strength,25.2,3.4,4,2,28.78
|
385 |
+
33,Female,68.2,1.75,177,150,71,0.85,638.0,Strength,29.0,1.7,2,1,22.27
|
386 |
+
30,Male,91.4,1.99,171,152,60,1.37,1145.0,HIIT,23.0,3.7,3,2,23.08
|
387 |
+
59,Female,42.1,1.65,172,132,59,1.22,725.0,Strength,33.0,2.2,2,1,15.46
|
388 |
+
47,Female,68.7,1.76,161,137,66,1.37,845.0,Strength,27.7,2.4,3,2,22.18
|
389 |
+
36,Female,47.2,1.74,196,160,53,1.5,1200.0,Cardio,32.2,1.6,4,2,15.59
|
390 |
+
34,Male,92.0,1.76,175,143,73,0.73,574.0,Yoga,22.1,3.5,3,1,29.7
|
391 |
+
36,Male,56.2,1.95,183,128,64,1.09,767.0,Strength,22.5,3.4,4,2,14.78
|
392 |
+
45,Male,58.4,1.72,194,150,65,1.31,973.0,HIIT,23.4,3.1,4,2,19.74
|
393 |
+
43,Male,82.9,1.95,181,160,70,1.9,1505.0,Cardio,12.9,3.5,5,3,21.8
|
394 |
+
54,Female,66.9,1.74,195,129,62,1.24,720.0,HIIT,29.5,2.1,2,1,22.1
|
395 |
+
43,Male,66.3,1.85,170,121,58,1.18,707.0,Cardio,27.5,3.2,2,1,19.37
|
396 |
+
40,Male,93.6,1.93,188,157,60,1.38,1192.0,Cardio,22.1,2.0,3,1,25.13
|
397 |
+
26,Female,64.1,1.5,194,134,60,1.93,1293.0,Strength,15.1,2.7,5,3,28.49
|
398 |
+
29,Male,86.7,1.62,174,122,55,1.52,1020.0,Strength,13.9,3.5,4,3,33.04
|
399 |
+
18,Female,62.0,1.59,190,162,50,1.23,996.0,Strength,33.2,2.2,4,2,24.52
|
400 |
+
18,Female,58.1,1.61,175,150,71,1.9,1425.0,Yoga,15.3,2.7,4,3,22.41
|
401 |
+
51,Female,64.9,1.6,169,125,55,1.49,838.0,Yoga,31.1,2.5,4,2,25.35
|
402 |
+
49,Female,69.3,1.62,191,122,62,1.14,626.0,HIIT,28.8,1.9,4,2,26.41
|
403 |
+
42,Female,42.7,1.74,161,130,71,1.04,608.0,Strength,32.9,1.6,3,1,14.1
|
404 |
+
57,Female,51.4,1.63,183,134,73,1.2,724.0,Yoga,33.7,2.0,4,2,19.35
|
405 |
+
18,Female,67.4,1.6,182,164,71,0.6,492.0,Strength,33.5,2.4,3,1,26.33
|
406 |
+
33,Female,55.6,1.61,161,147,54,1.77,1301.0,Yoga,18.9,2.7,4,3,21.45
|
407 |
+
56,Male,125.3,1.86,197,129,64,1.0,639.0,Yoga,22.7,2.2,3,2,36.22
|
408 |
+
22,Male,102.1,1.85,190,157,67,1.48,1278.0,Cardio,28.1,2.4,4,2,29.83
|
409 |
+
39,Male,61.9,1.77,199,166,69,1.32,1205.0,Strength,25.3,2.3,3,1,19.76
|
410 |
+
46,Male,108.8,1.64,185,169,63,1.4,1171.0,Strength,20.5,3.4,3,1,40.45
|
411 |
+
20,Female,51.1,1.58,188,169,64,0.5,422.0,Yoga,29.6,1.6,2,1,20.47
|
412 |
+
29,Male,81.7,1.99,162,126,54,1.45,1005.0,Strength,29.4,3.2,2,1,20.63
|
413 |
+
43,Female,42.7,1.66,173,134,53,0.73,440.0,Yoga,33.9,1.9,2,1,15.5
|
414 |
+
33,Male,81.8,1.99,184,137,51,1.59,1198.0,Strength,10.5,3.5,4,3,20.66
|
415 |
+
54,Male,54.6,1.76,160,137,56,1.28,868.0,Cardio,27.4,3.3,4,2,17.63
|
416 |
+
39,Male,107.7,1.88,162,160,59,0.72,634.0,Strength,28.1,3.6,2,1,30.47
|
417 |
+
46,Female,56.9,1.6,185,143,65,0.88,566.0,Cardio,27.7,1.6,3,1,22.23
|
418 |
+
31,Male,78.8,1.71,177,121,59,1.49,992.0,HIIT,24.7,2.5,4,2,26.95
|
419 |
+
45,Female,48.2,1.64,168,159,67,1.25,894.0,Strength,32.1,2.5,4,2,17.92
|
420 |
+
22,Female,50.7,1.59,197,139,66,1.27,883.0,Strength,29.4,1.8,3,2,20.05
|
421 |
+
47,Male,86.6,1.99,182,153,70,1.98,1500.0,Strength,10.6,3.5,4,3,21.87
|
422 |
+
22,Male,96.3,1.63,180,162,62,1.35,1203.0,Cardio,27.1,2.4,4,2,36.25
|
423 |
+
29,Male,80.8,1.98,160,145,50,1.65,1316.0,Strength,14.6,3.5,5,3,20.61
|
424 |
+
33,Female,58.0,1.53,180,126,50,1.84,1159.0,Strength,18.3,2.7,5,3,24.78
|
425 |
+
43,Male,95.9,1.85,186,157,64,1.28,995.0,Yoga,27.7,3.4,2,1,28.02
|
426 |
+
43,Female,61.5,1.58,165,149,50,1.86,1247.0,HIIT,16.8,2.7,5,3,24.64
|
427 |
+
38,Female,40.6,1.79,195,161,55,0.62,499.0,Cardio,26.8,2.7,2,1,12.67
|
428 |
+
56,Male,82.5,1.87,187,124,74,1.51,927.0,Yoga,13.2,3.5,5,3,23.59
|
429 |
+
53,Male,105.1,1.84,176,130,62,0.69,444.0,Cardio,23.3,2.9,3,1,31.04
|
430 |
+
50,Female,58.1,1.58,199,120,50,1.93,1042.0,Yoga,19.3,2.7,5,3,23.27
|
431 |
+
47,Female,61.0,1.76,162,153,54,1.54,1060.0,HIIT,15.6,2.7,5,3,19.69
|
432 |
+
54,Female,64.5,1.53,171,120,58,1.74,940.0,Yoga,17.2,2.7,4,3,27.55
|
433 |
+
40,Male,58.2,1.98,198,138,74,1.43,1085.0,Cardio,24.0,2.5,3,2,14.85
|
434 |
+
27,Female,69.5,1.76,171,121,66,0.94,569.0,Strength,34.4,2.0,3,1,22.44
|
435 |
+
22,Male,62.2,1.84,161,140,65,0.51,393.0,Strength,21.5,2.3,3,1,18.37
|
436 |
+
53,Female,68.0,1.7,181,139,57,1.06,663.0,HIIT,25.1,2.4,4,2,23.53
|
437 |
+
51,Female,56.3,1.5,182,142,66,1.43,914.0,Cardio,27.4,2.4,3,1,25.02
|
438 |
+
48,Male,94.5,1.7,189,140,64,1.01,700.0,Cardio,28.2,3.5,3,2,32.7
|
439 |
+
27,Female,58.0,1.79,164,143,73,1.39,994.0,Cardio,27.1,1.5,2,1,18.1
|
440 |
+
36,Male,84.0,1.94,168,123,50,1.8,1218.0,HIIT,11.2,3.5,5,3,22.32
|
441 |
+
49,Male,61.0,1.87,180,131,61,1.14,739.0,Strength,21.3,3.0,4,2,17.44
|
442 |
+
18,Female,64.8,1.53,170,141,54,1.98,1396.0,Yoga,18.6,2.7,5,3,27.68
|
443 |
+
22,Male,45.7,1.77,164,139,73,1.04,795.0,HIIT,20.7,2.4,3,1,14.59
|
444 |
+
21,Male,80.9,1.9,194,137,55,1.8,1356.0,Yoga,11.7,3.5,4,3,22.41
|
445 |
+
33,Female,64.1,1.63,186,120,74,1.58,948.0,Strength,16.4,2.7,5,3,24.13
|
446 |
+
41,Male,67.0,1.77,161,149,50,1.22,900.0,HIIT,25.6,2.6,3,2,21.39
|
447 |
+
33,Male,106.5,1.6,183,152,74,1.4,1170.0,Strength,27.3,3.3,4,2,41.6
|
448 |
+
19,Male,95.1,1.85,190,143,50,1.21,952.0,Yoga,25.3,2.3,4,2,27.79
|
449 |
+
45,Female,65.5,1.57,192,133,59,0.66,395.0,Cardio,34.3,2.3,2,1,26.57
|
450 |
+
49,Male,105.7,1.64,198,155,59,1.2,921.0,Cardio,29.5,3.1,3,2,39.3
|
451 |
+
44,Female,48.0,1.76,189,124,52,0.88,491.0,Yoga,28.6,2.6,2,1,15.5
|
452 |
+
37,Female,69.5,1.5,196,130,66,0.69,448.0,Cardio,32.8,2.4,2,1,30.89
|
453 |
+
41,Male,66.1,1.69,187,143,68,0.77,545.0,Yoga,27.4,3.4,2,1,23.14
|
454 |
+
29,Male,68.0,1.7,190,150,60,0.76,627.0,HIIT,28.9,2.9,2,1,23.53
|
455 |
+
52,Male,50.3,1.78,170,132,67,0.85,555.0,HIIT,24.5,2.3,2,1,15.88
|
456 |
+
50,Female,69.3,1.68,182,135,51,1.2,729.0,HIIT,30.3,2.0,2,1,24.55
|
457 |
+
50,Male,86.7,1.63,161,143,58,1.7,1203.0,Cardio,12.1,3.5,4,3,32.63
|
458 |
+
54,Male,125.9,1.94,199,132,73,1.35,882.0,Strength,28.5,2.9,3,2,33.45
|
459 |
+
29,Male,88.1,1.93,186,143,66,1.88,1479.0,Cardio,11.1,3.5,5,3,23.65
|
460 |
+
20,Male,124.3,1.82,194,145,63,1.25,997.0,Cardio,22.4,3.2,3,2,37.53
|
461 |
+
18,Male,62.0,1.85,161,121,53,0.88,586.0,Strength,23.7,3.0,3,1,18.12
|
462 |
+
50,Female,69.7,1.72,198,135,66,1.24,753.0,Strength,27.3,2.0,4,2,23.56
|
463 |
+
57,Female,60.9,1.52,196,157,66,1.31,926.0,Strength,30.6,1.8,3,2,26.36
|
464 |
+
27,Male,76.5,1.97,180,165,61,1.13,1025.0,Strength,21.3,2.3,2,1,19.71
|
465 |
+
46,Male,94.7,1.82,164,120,69,1.47,873.0,Cardio,23.2,3.2,3,2,28.59
|
466 |
+
30,Male,67.9,1.75,180,168,67,1.25,1155.0,Yoga,29.1,3.1,2,1,22.17
|
467 |
+
29,Male,121.1,1.87,188,130,52,1.31,937.0,HIIT,24.1,3.2,4,2,34.63
|
468 |
+
48,Female,71.5,1.64,179,154,60,1.46,1012.0,Yoga,32.5,1.9,4,2,26.58
|
469 |
+
19,Male,98.6,1.7,197,162,74,0.83,740.0,Cardio,21.1,2.4,2,1,34.12
|
470 |
+
52,Female,68.2,1.63,179,148,67,1.17,779.0,Strength,27.5,2.4,3,1,25.67
|
471 |
+
40,Female,57.7,1.69,184,156,53,1.18,920.0,HIIT,33.1,2.4,4,2,20.2
|
472 |
+
34,Male,124.6,1.63,161,136,66,1.41,1055.0,HIIT,27.6,2.8,3,2,46.9
|
473 |
+
43,Female,73.0,1.59,191,158,67,1.31,931.0,Yoga,28.9,2.2,3,1,28.88
|
474 |
+
25,Female,59.4,1.51,185,161,54,1.62,1304.0,Cardio,19.8,2.7,5,3,26.05
|
475 |
+
46,Female,52.0,1.65,165,147,63,0.7,463.0,Cardio,34.1,1.9,2,1,19.1
|
476 |
+
43,Female,42.2,1.65,162,148,59,1.33,886.0,Cardio,34.6,2.3,3,2,15.5
|
477 |
+
27,Male,89.3,1.64,192,162,64,1.82,1622.0,HIIT,12.1,3.5,4,3,33.2
|
478 |
+
43,Male,110.0,1.76,160,122,50,1.09,658.0,Yoga,22.0,3.4,3,1,35.51
|
479 |
+
51,Female,66.2,1.58,164,129,65,0.86,499.0,HIIT,31.3,2.3,3,1,26.52
|
480 |
+
58,Male,58.6,1.66,172,161,60,1.21,964.0,HIIT,26.8,2.9,2,1,21.27
|
481 |
+
24,Male,51.0,1.67,178,133,72,0.97,710.0,Strength,21.3,2.8,3,1,18.29
|
482 |
+
21,Male,101.5,1.95,171,131,69,0.97,699.0,Yoga,27.9,3.1,3,1,26.69
|
483 |
+
28,Male,114.2,1.87,184,166,55,1.05,959.0,Strength,20.2,3.2,3,2,32.66
|
484 |
+
46,Male,54.4,1.72,194,161,73,0.91,725.0,Cardio,24.8,2.9,2,1,18.39
|
485 |
+
53,Female,52.4,1.57,171,149,71,1.34,898.0,HIIT,28.3,2.2,3,2,21.26
|
486 |
+
42,Male,85.2,1.81,189,151,65,1.54,1151.0,Yoga,13.7,3.5,5,3,26.01
|
487 |
+
38,Male,83.6,1.74,164,151,51,1.66,1379.0,Cardio,11.6,3.5,5,3,27.61
|
488 |
+
53,Male,115.4,1.92,193,161,50,1.36,1084.0,Yoga,28.3,2.2,4,2,31.3
|
489 |
+
27,Male,71.2,1.97,181,151,73,0.74,615.0,HIIT,25.9,3.6,3,1,18.35
|
490 |
+
54,Female,78.1,1.6,198,145,73,1.1,718.0,Yoga,32.9,2.4,4,2,30.51
|
491 |
+
26,Female,54.2,1.65,172,120,58,1.07,642.0,Cardio,34.9,1.9,4,2,19.91
|
492 |
+
41,Female,77.6,1.76,162,161,71,1.27,920.0,Strength,31.8,2.2,4,2,25.05
|
493 |
+
52,Female,44.1,1.62,179,121,61,1.41,768.0,HIIT,34.8,1.6,3,1,16.8
|
494 |
+
52,Male,85.5,1.8,190,136,66,1.7,1144.0,Strength,10.1,3.5,5,3,26.39
|
495 |
+
53,Female,47.8,1.76,164,149,74,1.06,711.0,HIIT,28.4,1.5,4,2,15.43
|
496 |
+
35,Male,102.5,1.94,183,158,64,0.84,730.0,Cardio,21.1,2.4,2,1,27.23
|
497 |
+
56,Male,118.0,1.9,199,126,68,0.66,412.0,HIIT,22.6,3.2,2,1,32.69
|
498 |
+
49,Male,82.3,1.84,192,146,71,1.29,932.0,Strength,28.4,3.4,4,2,24.31
|
499 |
+
41,Male,81.6,1.87,167,128,59,1.87,1185.0,HIIT,10.2,3.5,5,3,23.33
|
500 |
+
40,Male,60.2,1.88,183,141,61,1.22,946.0,Cardio,25.2,3.0,3,2,17.03
|
501 |
+
49,Female,49.2,1.54,179,153,63,1.28,881.0,HIIT,30.7,2.1,3,2,20.75
|
502 |
+
54,Female,46.6,1.5,175,165,58,1.38,1025.0,Strength,30.6,2.0,2,1,20.71
|
503 |
+
29,Female,68.7,1.72,171,168,62,1.08,907.0,Cardio,29.8,1.7,4,2,23.22
|
504 |
+
30,Female,60.6,1.55,172,120,52,1.3,780.0,Strength,32.9,1.6,3,2,25.22
|
505 |
+
40,Male,52.1,1.61,198,128,70,0.87,612.0,HIIT,21.3,3.3,2,1,20.1
|
506 |
+
42,Female,46.6,1.77,184,139,63,0.61,382.0,Yoga,28.1,2.6,2,1,14.87
|
507 |
+
52,Male,65.5,1.74,191,138,70,1.48,1011.0,Strength,26.2,2.8,4,2,21.63
|
508 |
+
58,Female,44.2,1.57,183,155,59,1.08,753.0,HIIT,31.9,2.3,3,1,17.93
|
509 |
+
47,Male,89.1,1.84,168,159,65,1.44,1133.0,Yoga,24.0,3.6,3,2,26.32
|
510 |
+
34,Male,65.9,1.62,199,164,56,0.81,731.0,Yoga,28.8,2.2,2,1,25.11
|
511 |
+
37,Female,55.6,1.57,182,123,53,0.97,597.0,Cardio,29.2,2.4,2,1,22.56
|
512 |
+
42,Male,63.7,1.98,172,128,69,1.37,868.0,Yoga,24.0,3.0,2,1,16.25
|
513 |
+
39,Male,86.2,1.82,191,160,72,1.96,1725.0,Strength,10.2,3.5,5,3,26.02
|
514 |
+
30,Female,59.2,1.63,174,141,74,1.85,1304.0,Strength,17.8,2.7,4,3,22.28
|
515 |
+
36,Male,85.4,1.88,195,137,60,1.98,1492.0,Yoga,13.5,3.5,5,3,24.16
|
516 |
+
53,Female,68.1,1.55,164,131,65,1.41,831.0,HIIT,26.1,2.2,4,2,28.35
|
517 |
+
29,Female,60.0,1.62,181,161,69,0.85,684.0,Strength,28.1,1.9,2,1,22.86
|
518 |
+
58,Female,74.8,1.69,175,162,53,1.28,933.0,Strength,32.8,2.3,4,2,26.19
|
519 |
+
36,Male,90.3,1.65,169,158,71,1.38,1199.0,Cardio,23.7,3.4,4,2,33.17
|
520 |
+
29,Male,86.1,1.65,183,128,71,1.66,1169.0,HIIT,11.2,3.5,4,3,31.63
|
521 |
+
26,Male,73.7,1.66,177,125,72,0.93,639.0,Yoga,26.7,2.2,2,1,26.75
|
522 |
+
24,Female,67.7,1.56,177,138,66,1.42,980.0,HIIT,27.0,2.1,3,2,27.82
|
523 |
+
45,Male,78.3,1.96,166,167,62,1.29,1066.0,Cardio,29.0,2.2,3,1,20.38
|
524 |
+
31,Female,48.2,1.65,163,166,60,1.1,913.0,Cardio,26.1,2.5,2,1,17.7
|
525 |
+
48,Female,56.8,1.51,185,126,52,1.37,777.0,HIIT,32.1,2.1,4,2,24.91
|
526 |
+
36,Male,112.4,1.63,164,135,58,1.02,757.0,Cardio,25.0,3.4,4,2,42.3
|
527 |
+
33,Female,59.0,1.67,175,124,55,0.9,558.0,Cardio,33.7,1.9,3,1,21.16
|
528 |
+
22,Male,98.4,1.88,194,135,71,0.52,386.0,Cardio,21.3,2.2,2,1,27.84
|
529 |
+
52,Male,66.5,1.6,185,120,70,1.34,796.0,HIIT,26.8,2.1,4,2,25.98
|
530 |
+
29,Male,106.5,1.81,177,156,60,1.29,1107.0,Cardio,25.7,2.5,4,2,32.51
|
531 |
+
42,Male,88.4,1.93,188,158,65,1.68,1314.0,Yoga,12.4,3.5,4,3,23.73
|
532 |
+
38,Male,88.4,1.79,182,138,68,1.74,1321.0,Yoga,12.5,3.5,5,3,27.59
|
533 |
+
53,Female,53.3,1.74,173,156,54,1.37,962.0,Strength,32.2,1.8,3,2,17.6
|
534 |
+
40,Female,58.1,1.56,174,136,63,0.61,415.0,Yoga,34.4,2.2,2,1,23.87
|
535 |
+
33,Female,74.2,1.76,192,145,66,1.15,834.0,Strength,25.9,1.5,4,2,23.95
|
536 |
+
56,Male,84.6,1.63,184,141,52,1.01,705.0,HIIT,20.2,2.9,4,2,31.84
|
537 |
+
59,Male,78.0,1.92,180,127,53,0.72,453.0,Cardio,28.1,2.7,3,1,21.16
|
538 |
+
56,Male,89.0,1.68,176,152,65,1.77,1332.0,Yoga,10.5,3.5,5,3,31.53
|
539 |
+
31,Female,42.7,1.76,182,121,65,1.46,883.0,Strength,34.9,2.2,3,1,13.78
|
540 |
+
48,Male,83.9,1.82,176,149,70,1.9,1401.0,HIIT,13.1,3.5,5,3,25.33
|
541 |
+
22,Female,78.7,1.52,173,166,74,1.45,1204.0,Strength,31.5,2.3,3,2,34.06
|
542 |
+
52,Female,65.9,1.52,188,139,53,1.27,794.0,Cardio,27.0,2.3,4,2,28.52
|
543 |
+
40,Male,76.9,1.92,179,137,68,1.13,851.0,Yoga,22.4,3.7,4,2,20.86
|
544 |
+
46,Male,84.3,2.0,189,162,66,1.83,1467.0,HIIT,13.3,3.5,5,3,21.07
|
545 |
+
28,Female,62.4,1.6,178,129,62,1.1,710.0,Strength,34.1,1.7,3,2,24.37
|
546 |
+
35,Male,63.7,1.74,198,143,71,1.03,810.0,HIIT,29.8,2.7,4,2,21.04
|
547 |
+
29,Female,54.9,1.52,172,123,72,1.48,910.0,Strength,27.0,2.0,3,1,23.76
|
548 |
+
26,Male,76.4,1.79,177,156,73,1.17,1004.0,Strength,21.3,2.7,3,2,23.84
|
549 |
+
27,Male,106.4,1.86,182,123,50,1.34,907.0,Cardio,20.6,3.1,2,1,30.76
|
550 |
+
34,Female,68.4,1.5,192,132,61,1.37,904.0,Cardio,33.7,2.1,4,2,30.4
|
551 |
+
55,Male,63.5,1.86,198,144,53,1.36,969.0,Strength,22.9,2.9,4,2,18.35
|
552 |
+
24,Female,59.4,1.5,199,132,60,1.25,825.0,Yoga,25.0,2.0,3,2,26.4
|
553 |
+
30,Male,113.4,1.91,177,137,54,1.27,957.0,HIIT,22.2,3.7,3,1,31.08
|
554 |
+
57,Female,61.9,1.52,168,143,51,0.92,592.0,HIIT,28.4,2.6,3,1,26.79
|
555 |
+
59,Female,70.7,1.68,192,121,66,1.17,637.0,Cardio,34.9,1.9,3,2,25.05
|
556 |
+
26,Male,111.5,1.9,191,167,57,1.02,937.0,Yoga,25.2,2.2,2,1,30.89
|
557 |
+
44,Female,72.1,1.66,176,152,55,1.4,958.0,Strength,27.0,2.5,2,1,26.16
|
558 |
+
19,Male,56.9,1.87,178,138,70,0.61,463.0,Cardio,23.3,3.7,3,1,16.27
|
559 |
+
22,Male,86.2,1.9,186,128,58,1.91,1345.0,Strength,11.7,3.5,5,3,23.88
|
560 |
+
46,Male,59.4,1.68,165,147,62,1.16,844.0,Strength,20.2,2.5,4,2,21.05
|
561 |
+
54,Female,75.6,1.72,194,154,60,0.97,672.0,Cardio,26.4,1.9,3,1,25.55
|
562 |
+
55,Female,76.3,1.73,196,158,65,1.08,768.0,Yoga,32.0,2.6,3,1,25.49
|
563 |
+
36,Male,95.8,1.86,193,129,65,1.37,972.0,HIIT,21.2,3.2,3,1,27.69
|
564 |
+
25,Male,120.6,1.83,179,120,51,1.04,686.0,Cardio,22.3,2.5,3,2,36.01
|
565 |
+
18,Female,65.3,1.55,184,161,59,1.42,1143.0,Yoga,28.5,2.2,3,2,27.18
|
566 |
+
39,Male,85.3,1.89,163,140,61,0.77,593.0,Strength,27.6,3.6,2,1,23.88
|
567 |
+
34,Male,68.0,1.68,169,128,57,0.67,472.0,Cardio,25.8,3.4,2,1,24.09
|
568 |
+
24,Female,52.6,1.57,169,166,60,1.29,1071.0,HIIT,31.9,2.4,2,1,21.34
|
569 |
+
42,Male,63.3,1.77,183,134,59,1.32,876.0,HIIT,25.7,3.3,3,2,20.2
|
570 |
+
21,Female,76.3,1.65,180,154,62,1.14,878.0,Strength,31.8,1.7,3,2,28.03
|
571 |
+
53,Male,61.0,1.63,170,124,74,0.54,331.0,Cardio,20.0,3.4,3,1,22.96
|
572 |
+
23,Female,67.8,1.61,186,160,66,1.34,1072.0,HIIT,34.3,1.8,2,1,26.16
|
573 |
+
48,Male,114.9,1.86,175,141,56,1.36,949.0,Cardio,21.1,3.6,3,1,33.21
|
574 |
+
36,Male,88.0,1.71,185,160,73,1.87,1646.0,HIIT,12.0,3.5,5,3,30.09
|
575 |
+
56,Female,67.7,1.58,189,142,52,1.45,927.0,Strength,32.7,1.9,2,1,27.12
|
576 |
+
44,Male,124.8,1.85,175,126,69,1.35,842.0,Strength,24.4,3.5,4,2,36.46
|
577 |
+
27,Female,53.0,1.58,166,142,62,1.26,895.0,Cardio,34.5,1.8,4,2,21.23
|
578 |
+
43,Male,61.2,1.88,175,163,68,1.03,831.0,Yoga,24.7,2.9,3,1,17.32
|
579 |
+
36,Female,48.7,1.68,194,144,56,1.23,886.0,Yoga,33.7,1.6,3,1,17.25
|
580 |
+
56,Female,50.6,1.7,175,146,58,1.29,848.0,Strength,33.1,2.3,2,1,17.51
|
581 |
+
20,Female,72.6,1.73,199,160,68,1.27,1016.0,HIIT,34.8,2.5,3,2,24.26
|
582 |
+
30,Female,70.4,1.56,171,125,62,1.03,644.0,Yoga,34.3,2.4,4,2,28.93
|
583 |
+
45,Male,52.5,1.88,194,153,71,1.08,818.0,Strength,29.0,2.9,4,2,14.85
|
584 |
+
37,Male,76.3,1.77,180,128,57,1.36,957.0,HIIT,27.3,2.1,4,2,24.35
|
585 |
+
45,Female,41.2,1.58,195,168,71,1.47,1111.0,HIIT,28.7,2.6,2,1,16.5
|
586 |
+
25,Female,55.3,1.76,176,152,67,1.56,1186.0,Yoga,15.5,2.7,4,3,17.85
|
587 |
+
58,Female,49.7,1.67,191,125,72,1.38,776.0,Strength,31.9,2.3,4,2,17.82
|
588 |
+
56,Male,48.3,1.87,165,156,51,0.68,525.0,HIIT,29.8,3.3,3,1,13.81
|
589 |
+
18,Male,83.2,1.96,183,150,67,1.83,1510.0,HIIT,13.6,3.5,4,3,21.66
|
590 |
+
20,Male,120.5,1.73,186,153,67,1.01,850.0,Cardio,29.3,3.4,3,2,40.26
|
591 |
+
30,Male,121.6,2.0,179,160,60,1.24,1091.0,Cardio,28.0,3.3,4,2,30.4
|
592 |
+
45,Female,73.0,1.75,184,148,50,1.14,759.0,Yoga,26.6,2.0,4,2,23.84
|
593 |
+
42,Female,57.5,1.67,161,133,63,1.76,1053.0,Cardio,16.2,2.7,5,3,20.62
|
594 |
+
50,Female,42.7,1.53,168,155,65,1.41,983.0,Strength,28.4,2.4,4,2,18.24
|
595 |
+
55,Male,129.9,1.73,187,155,60,0.69,529.0,Yoga,21.7,3.1,3,1,43.4
|
596 |
+
23,Male,108.6,1.92,197,134,50,0.89,656.0,Yoga,25.8,3.5,2,1,29.46
|
597 |
+
49,Male,88.6,2.0,162,127,56,1.83,1150.0,Cardio,14.9,3.5,4,3,22.15
|
598 |
+
38,Female,49.7,1.51,179,145,65,1.25,906.0,HIIT,32.6,2.5,3,1,21.8
|
599 |
+
33,Female,56.4,1.54,165,155,63,1.06,822.0,Strength,29.2,1.5,3,1,23.78
|
600 |
+
38,Male,46.9,1.74,198,167,64,1.03,946.0,Strength,20.0,2.6,4,2,15.49
|
601 |
+
28,Female,71.3,1.67,192,140,63,1.46,1022.0,Strength,28.1,1.5,4,2,25.57
|
602 |
+
54,Male,71.6,1.86,160,147,70,1.14,830.0,Yoga,25.3,2.2,3,2,20.7
|
603 |
+
53,Male,82.3,1.61,196,123,60,1.87,1139.0,Strength,11.6,3.5,5,3,31.75
|
604 |
+
52,Female,70.6,1.69,165,135,65,1.36,826.0,HIIT,26.1,2.2,3,1,24.72
|
605 |
+
36,Male,109.8,1.62,193,141,68,0.84,651.0,HIIT,24.4,3.5,3,1,41.84
|
606 |
+
37,Female,73.5,1.69,174,131,66,0.54,354.0,Cardio,27.5,1.6,2,1,25.73
|
607 |
+
35,Male,85.6,1.85,185,135,55,1.78,1322.0,Strength,14.5,3.5,5,3,25.01
|
608 |
+
58,Female,74.6,1.68,173,159,60,1.03,737.0,Yoga,26.0,2.0,4,2,26.43
|
609 |
+
31,Female,63.2,1.8,166,157,66,0.59,463.0,Cardio,25.5,2.6,2,1,19.51
|
610 |
+
32,Female,62.6,1.63,190,161,58,1.67,1344.0,HIIT,15.0,2.7,5,3,23.56
|
611 |
+
48,Male,87.1,1.76,183,156,67,1.81,1398.0,Strength,11.6,3.5,5,3,28.12
|
612 |
+
18,Male,82.3,1.84,190,148,66,1.73,1408.0,HIIT,13.3,3.5,5,3,24.31
|
613 |
+
20,Female,64.3,1.78,188,137,61,1.71,1171.0,Cardio,18.7,2.7,4,3,20.29
|
614 |
+
33,Female,53.7,1.66,191,129,72,1.25,806.0,HIIT,29.5,2.5,3,1,19.49
|
615 |
+
40,Male,63.0,2.0,176,161,71,1.42,1257.0,Strength,26.8,2.9,4,2,15.75
|
616 |
+
28,Male,128.4,1.86,173,158,71,1.06,921.0,Strength,23.6,3.3,4,2,37.11
|
617 |
+
29,Male,88.0,1.89,199,137,54,1.75,1319.0,Cardio,13.3,3.5,5,3,24.64
|
618 |
+
27,Female,63.7,1.52,195,120,60,1.19,714.0,Strength,25.4,2.1,4,2,27.57
|
619 |
+
49,Male,83.7,1.87,183,158,53,1.29,1009.0,HIIT,23.9,2.3,4,2,23.94
|
620 |
+
33,Male,102.6,1.75,186,140,53,1.4,1078.0,HIIT,27.9,2.2,3,2,33.5
|
621 |
+
25,Female,77.7,1.55,184,120,52,0.55,330.0,Yoga,33.0,1.7,2,1,32.34
|
622 |
+
55,Male,87.5,1.88,191,134,73,1.19,789.0,Yoga,27.2,2.6,4,2,24.76
|
623 |
+
29,Male,87.0,1.86,177,123,72,1.52,1028.0,Yoga,11.0,3.5,4,3,25.15
|
624 |
+
41,Male,82.8,1.66,177,139,74,1.97,1355.0,HIIT,11.2,3.5,5,3,30.05
|
625 |
+
45,Female,65.4,1.68,196,129,66,0.76,441.0,HIIT,35.0,2.6,3,1,23.17
|
626 |
+
25,Female,47.2,1.71,185,142,56,0.89,632.0,Cardio,26.0,2.5,2,1,16.14
|
627 |
+
45,Female,58.2,1.7,168,160,53,0.95,684.0,Yoga,26.8,2.0,3,1,20.14
|
628 |
+
53,Female,73.5,1.55,194,153,72,1.17,806.0,HIIT,26.3,2.1,4,2,30.59
|
629 |
+
43,Female,55.2,1.73,167,165,62,1.67,1240.0,Cardio,16.6,2.7,5,3,18.44
|
630 |
+
25,Female,64.4,1.71,179,167,61,1.12,935.0,HIIT,27.1,1.8,3,1,22.02
|
631 |
+
45,Female,73.5,1.74,181,152,50,1.18,807.0,Cardio,30.0,2.3,4,2,24.28
|
632 |
+
45,Male,89.6,1.81,178,153,70,1.7,1287.0,Yoga,12.4,3.5,5,3,27.35
|
633 |
+
54,Male,86.5,1.76,189,158,68,1.48,1158.0,Yoga,29.0,3.4,3,2,27.92
|
634 |
+
58,Female,46.1,1.67,187,129,70,1.28,743.0,Yoga,25.3,1.8,4,2,16.53
|
635 |
+
53,Male,68.5,1.97,194,139,69,1.3,894.0,HIIT,23.2,2.1,3,2,17.65
|
636 |
+
44,Male,94.6,1.84,170,120,67,1.26,748.0,HIIT,26.0,3.1,4,2,27.94
|
637 |
+
34,Female,54.2,1.52,190,132,60,1.13,746.0,Cardio,31.0,2.2,3,1,23.46
|
638 |
+
26,Male,47.7,1.77,198,120,69,1.15,759.0,Strength,24.8,2.7,3,2,15.23
|
639 |
+
50,Male,52.2,1.84,195,124,52,1.38,847.0,Strength,28.2,3.1,4,2,15.42
|
640 |
+
37,Male,88.8,1.95,189,135,66,1.58,1173.0,Yoga,10.3,3.5,5,3,23.35
|
641 |
+
30,Male,101.0,1.68,182,134,61,1.46,1076.0,Strength,28.2,2.9,4,2,35.79
|
642 |
+
45,Male,118.4,1.95,178,168,59,1.06,881.0,Yoga,24.9,2.4,3,2,31.14
|
643 |
+
46,Female,47.9,1.72,171,147,57,1.41,933.0,Cardio,26.3,2.0,3,1,16.19
|
644 |
+
30,Female,51.5,1.74,174,150,64,1.08,810.0,Strength,33.9,2.0,3,2,17.01
|
645 |
+
52,Female,79.9,1.51,190,142,54,0.75,479.0,Strength,31.5,2.6,3,1,35.04
|
646 |
+
23,Male,121.3,1.85,196,167,53,0.72,661.0,Yoga,21.6,3.6,2,1,35.44
|
647 |
+
35,Female,78.9,1.64,196,164,70,1.28,1050.0,Cardio,25.3,2.6,4,2,29.34
|
648 |
+
22,Male,88.5,1.62,174,162,69,1.88,1675.0,Strength,10.7,3.5,5,3,33.72
|
649 |
+
42,Male,73.5,1.63,188,136,68,0.52,350.0,Strength,26.1,3.2,3,1,27.66
|
650 |
+
19,Male,127.9,1.93,185,168,70,1.27,1173.0,Strength,21.8,3.0,4,2,34.34
|
651 |
+
27,Male,88.5,1.98,161,153,53,1.8,1515.0,Cardio,11.1,3.5,4,3,22.57
|
652 |
+
47,Female,43.4,1.62,179,132,64,0.51,303.0,Cardio,25.3,2.3,3,1,16.54
|
653 |
+
22,Female,42.8,1.56,174,133,66,1.47,978.0,Strength,32.2,2.6,3,2,17.59
|
654 |
+
50,Male,64.5,1.79,163,130,61,1.17,753.0,Yoga,28.1,2.4,4,2,20.13
|
655 |
+
18,Female,50.7,1.53,181,147,52,1.29,948.0,Yoga,33.0,2.1,3,2,21.66
|
656 |
+
35,Male,59.2,1.66,197,161,59,1.3,1151.0,Strength,21.3,3.2,3,1,21.48
|
657 |
+
49,Female,78.9,1.73,182,151,64,1.38,938.0,Cardio,34.0,2.3,2,1,26.36
|
658 |
+
28,Female,78.7,1.63,185,154,59,1.1,847.0,Strength,31.7,1.8,3,2,29.62
|
659 |
+
38,Male,68.7,1.92,170,150,73,1.31,1081.0,Cardio,29.0,3.0,4,2,18.64
|
660 |
+
43,Female,53.1,1.59,187,136,72,0.82,502.0,Strength,29.5,2.5,2,1,21.0
|
661 |
+
42,Male,64.8,1.65,161,166,67,1.1,904.0,Cardio,24.4,2.8,3,2,23.8
|
662 |
+
39,Female,50.3,1.61,167,128,50,1.17,749.0,HIIT,32.8,2.5,2,1,19.41
|
663 |
+
44,Male,102.3,1.63,188,129,52,1.34,856.0,Yoga,20.9,2.6,4,2,38.5
|
664 |
+
30,Male,62.9,1.92,170,127,70,1.13,789.0,HIIT,25.2,3.6,2,1,17.06
|
665 |
+
50,Female,56.5,1.6,196,140,61,1.88,1184.0,Yoga,19.2,2.7,5,3,22.07
|
666 |
+
51,Female,74.6,1.55,177,132,50,0.71,422.0,Cardio,33.3,2.1,2,1,31.05
|
667 |
+
58,Male,52.0,1.79,173,169,52,1.12,937.0,HIIT,29.6,3.0,3,1,16.23
|
668 |
+
52,Female,52.1,1.67,169,124,52,1.5,837.0,Yoga,32.0,1.5,2,1,18.68
|
669 |
+
18,Female,72.2,1.54,194,125,54,0.97,606.0,Strength,27.1,1.7,2,1,30.44
|
670 |
+
38,Male,85.8,1.8,168,149,68,1.72,1410.0,Cardio,10.1,3.5,4,3,26.48
|
671 |
+
23,Male,81.4,1.85,194,150,74,1.6,1320.0,Cardio,12.4,3.5,4,3,23.78
|
672 |
+
45,Female,50.9,1.65,170,136,50,1.45,887.0,Strength,30.1,2.3,2,1,18.7
|
673 |
+
34,Male,52.0,1.78,171,130,53,1.38,987.0,Strength,22.4,2.7,4,2,16.41
|
674 |
+
22,Male,71.0,1.93,162,139,53,1.42,1086.0,Yoga,21.2,2.9,4,2,19.06
|
675 |
+
48,Male,80.6,1.77,198,167,66,1.51,1248.0,Cardio,12.9,3.5,4,3,25.73
|
676 |
+
22,Female,58.3,1.72,173,128,63,1.0,640.0,Yoga,32.6,1.6,3,2,19.71
|
677 |
+
55,Female,63.0,1.7,187,121,67,1.32,719.0,Strength,34.9,2.5,3,1,21.8
|
678 |
+
20,Male,111.0,1.94,170,156,50,1.02,875.0,Cardio,27.6,3.3,4,2,29.49
|
679 |
+
40,Female,52.6,1.66,198,120,71,1.27,762.0,Strength,32.9,1.7,3,2,19.09
|
680 |
+
54,Male,116.4,2.0,184,123,65,1.13,688.0,Yoga,26.2,3.1,3,1,29.1
|
681 |
+
54,Female,75.6,1.61,180,155,52,1.41,983.0,Yoga,34.9,2.5,4,2,29.17
|
682 |
+
27,Male,61.6,1.8,169,144,72,1.48,1172.0,Yoga,26.4,3.1,2,1,19.01
|
683 |
+
27,Male,108.0,1.8,174,122,70,1.38,926.0,Cardio,28.6,2.5,4,2,33.33
|
684 |
+
36,Female,59.3,1.75,178,128,58,0.99,634.0,Strength,34.5,2.3,3,1,19.36
|
685 |
+
34,Male,75.7,1.94,181,141,72,1.18,915.0,Strength,29.3,2.4,4,2,20.11
|
686 |
+
38,Female,56.3,1.6,180,142,53,1.21,859.0,Yoga,28.8,1.9,4,2,21.99
|
687 |
+
31,Female,58.2,1.73,191,131,70,1.17,766.0,Yoga,25.8,1.8,3,2,19.45
|
688 |
+
26,Male,55.7,1.68,182,129,54,1.13,802.0,Yoga,21.7,2.9,3,1,19.73
|
689 |
+
18,Male,125.9,1.67,172,153,60,1.46,1229.0,Yoga,20.6,2.2,3,2,45.14
|
690 |
+
30,Female,62.7,1.67,164,162,70,1.02,826.0,HIIT,26.1,2.6,4,2,22.48
|
691 |
+
21,Male,86.6,1.86,163,129,58,1.37,972.0,HIIT,21.8,2.6,3,2,25.03
|
692 |
+
18,Male,64.5,1.82,187,149,52,1.2,983.0,HIIT,23.4,2.4,3,2,19.47
|
693 |
+
57,Male,76.6,1.86,173,141,55,1.14,796.0,Yoga,25.4,2.8,4,2,22.14
|
694 |
+
49,Male,81.4,1.83,167,125,73,1.98,1225.0,Yoga,13.6,3.5,5,3,24.31
|
695 |
+
51,Male,60.7,1.71,168,169,60,1.14,954.0,Strength,22.1,2.5,2,1,20.76
|
696 |
+
45,Female,57.2,1.55,194,121,58,1.67,909.0,Cardio,18.4,2.7,5,3,23.81
|
697 |
+
48,Female,73.0,1.59,196,149,64,1.19,798.0,Strength,32.0,2.1,3,2,28.88
|
698 |
+
25,Male,123.8,1.99,180,121,72,1.13,752.0,HIIT,25.6,2.6,3,1,31.26
|
699 |
+
56,Male,93.6,1.66,177,151,52,1.37,1024.0,Strength,29.0,2.2,2,1,33.97
|
700 |
+
43,Male,76.8,1.92,192,161,50,1.24,988.0,Yoga,21.1,2.5,3,1,20.83
|
701 |
+
51,Female,54.7,1.53,167,135,69,1.11,674.0,HIIT,26.8,2.0,4,2,23.37
|
702 |
+
20,Male,92.3,1.94,176,131,71,1.14,821.0,HIIT,24.3,2.1,3,2,24.52
|
703 |
+
29,Female,71.8,1.55,190,120,68,1.2,720.0,Cardio,26.3,2.4,4,2,29.89
|
704 |
+
18,Female,66.9,1.57,193,127,63,1.07,679.0,Cardio,30.7,2.2,3,2,27.14
|
705 |
+
22,Female,48.7,1.76,165,167,66,1.37,1144.0,HIIT,29.0,2.2,4,2,15.72
|
706 |
+
47,Male,66.2,1.71,181,169,71,1.42,1188.0,HIIT,22.8,2.9,3,1,22.64
|
707 |
+
47,Female,40.0,1.76,173,132,63,0.8,475.0,Strength,26.7,2.2,3,1,12.91
|
708 |
+
34,Male,112.4,1.85,162,134,66,1.18,870.0,HIIT,23.4,3.6,4,2,32.84
|
709 |
+
40,Female,70.0,1.55,171,163,74,0.85,693.0,Yoga,31.1,1.5,3,1,29.14
|
710 |
+
32,Male,84.0,1.74,195,127,63,1.45,1013.0,Strength,25.8,2.1,3,1,27.74
|
711 |
+
54,Female,43.8,1.65,171,129,61,1.29,749.0,Yoga,26.6,1.7,4,2,16.09
|
712 |
+
38,Male,123.3,1.62,161,165,65,1.34,1216.0,Yoga,21.2,2.3,4,2,46.98
|
713 |
+
31,Female,57.9,1.56,161,124,50,1.8,1116.0,Yoga,15.1,2.7,5,3,23.79
|
714 |
+
19,Male,82.4,1.96,174,169,62,1.9,1766.0,HIIT,10.1,3.5,5,3,21.45
|
715 |
+
28,Male,84.8,1.79,182,138,55,1.35,1025.0,Cardio,28.8,2.3,4,2,26.47
|
716 |
+
56,Male,109.6,1.66,188,166,66,1.29,1060.0,Cardio,20.5,3.1,3,2,39.77
|
717 |
+
55,Male,86.4,1.77,176,157,61,1.0,777.0,Yoga,27.3,2.8,3,2,27.58
|
718 |
+
51,Female,63.9,1.8,191,130,72,1.07,626.0,HIIT,33.7,2.7,4,2,19.72
|
719 |
+
55,Female,70.8,1.62,166,162,68,0.54,394.0,Strength,26.0,1.8,3,1,26.98
|
720 |
+
51,Male,115.3,1.67,189,139,55,1.38,950.0,Yoga,24.4,2.5,3,2,41.34
|
721 |
+
35,Female,55.3,1.56,187,139,56,1.71,1188.0,Strength,19.8,2.7,5,3,22.72
|
722 |
+
47,Male,73.9,1.8,173,140,50,1.36,942.0,Strength,28.3,3.7,3,1,22.81
|
723 |
+
32,Male,97.3,1.96,189,137,50,1.36,1025.0,HIIT,24.9,3.4,3,2,25.33
|
724 |
+
44,Female,60.4,1.65,176,169,54,1.27,966.0,HIIT,32.6,2.1,4,2,22.19
|
725 |
+
51,Male,49.3,1.61,191,129,55,1.36,868.0,Cardio,28.3,2.9,2,1,19.02
|
726 |
+
55,Male,91.8,1.78,165,153,65,1.44,1091.0,Cardio,23.5,3.4,3,1,28.97
|
727 |
+
50,Female,73.6,1.55,183,145,74,0.89,581.0,HIIT,33.9,2.1,3,1,30.63
|
728 |
+
41,Male,47.1,1.78,165,149,65,1.26,929.0,Yoga,24.7,2.4,3,1,14.87
|
729 |
+
32,Male,65.2,1.62,186,128,63,0.58,408.0,Cardio,25.3,3.4,2,1,24.84
|
730 |
+
47,Male,87.2,1.64,177,165,50,2.0,1634.0,Strength,15.0,3.5,4,3,32.42
|
731 |
+
59,Male,96.7,1.71,183,150,62,0.57,423.0,Yoga,28.4,2.9,3,1,33.07
|
732 |
+
34,Female,46.9,1.61,196,161,69,1.02,821.0,Strength,28.6,1.7,3,2,18.09
|
733 |
+
22,Female,72.1,1.62,183,123,59,1.38,849.0,HIIT,25.1,2.1,3,1,27.47
|
734 |
+
46,Female,62.5,1.54,197,125,73,1.61,906.0,Strength,18.1,2.7,4,3,26.35
|
735 |
+
21,Male,110.7,1.69,193,133,59,1.06,775.0,Yoga,27.0,2.7,3,1,38.76
|
736 |
+
27,Male,102.6,1.83,199,123,58,1.41,954.0,HIIT,26.5,3.5,3,2,30.64
|
737 |
+
34,Female,64.3,1.62,174,145,62,1.76,1276.0,Yoga,19.8,2.7,5,3,24.5
|
738 |
+
27,Male,80.7,1.61,170,166,52,1.75,1598.0,Strength,14.3,3.5,4,3,31.13
|
739 |
+
34,Male,115.3,1.81,181,167,67,1.36,1249.0,Yoga,24.5,2.2,2,1,35.19
|
740 |
+
37,Male,87.8,1.69,183,158,69,1.81,1573.0,HIIT,10.3,3.5,5,3,30.74
|
741 |
+
41,Male,74.3,1.61,160,136,51,1.06,714.0,Strength,24.8,3.5,4,2,28.66
|
742 |
+
22,Female,78.5,1.7,177,138,66,1.36,938.0,Strength,31.9,2.1,4,2,27.16
|
743 |
+
51,Female,77.3,1.58,171,168,68,0.97,733.0,Cardio,31.1,2.0,2,1,30.96
|
744 |
+
23,Female,64.5,1.7,187,125,72,0.51,319.0,Cardio,30.4,1.7,2,1,22.32
|
745 |
+
19,Male,72.0,1.94,199,148,62,1.17,952.0,Yoga,24.7,3.2,3,2,19.13
|
746 |
+
30,Female,77.9,1.77,166,130,62,1.41,916.0,Cardio,27.9,2.6,4,2,24.87
|
747 |
+
28,Female,69.6,1.58,182,135,50,1.49,1006.0,Cardio,27.8,2.0,3,2,27.88
|
748 |
+
40,Male,68.9,1.99,180,149,51,1.16,951.0,Cardio,25.0,2.4,4,2,17.4
|
749 |
+
33,Male,45.9,1.89,193,144,50,1.45,1148.0,Cardio,21.6,2.9,3,2,12.85
|
750 |
+
48,Female,68.2,1.69,170,159,73,0.75,537.0,HIIT,28.4,2.5,3,1,23.88
|
751 |
+
28,Female,79.6,1.59,181,130,54,1.49,968.0,HIIT,28.2,1.5,3,2,31.49
|
752 |
+
33,Female,53.6,1.52,194,126,73,1.02,643.0,Cardio,30.9,2.3,2,1,23.2
|
753 |
+
25,Female,57.7,1.58,188,145,52,1.36,986.0,Yoga,25.7,2.2,3,2,23.11
|
754 |
+
21,Male,74.2,1.93,187,141,56,1.32,1024.0,HIIT,28.3,2.5,3,2,19.92
|
755 |
+
57,Female,64.4,1.56,177,144,73,1.52,985.0,Cardio,17.8,2.7,5,3,26.46
|
756 |
+
21,Female,54.9,1.78,173,138,71,0.55,380.0,HIIT,31.7,2.0,2,1,17.33
|
757 |
+
42,Male,50.3,1.64,177,150,62,0.63,468.0,Strength,27.0,2.4,3,1,18.7
|
758 |
+
20,Female,46.5,1.68,187,145,72,0.91,660.0,HIIT,27.9,2.4,2,1,16.48
|
759 |
+
49,Male,57.8,1.99,183,161,67,0.93,741.0,HIIT,24.7,3.1,3,1,14.6
|
760 |
+
20,Male,83.0,1.8,167,160,73,0.79,695.0,Yoga,29.6,2.9,2,1,25.62
|
761 |
+
44,Male,82.5,1.79,167,155,70,1.51,1159.0,HIIT,13.8,3.5,5,3,25.75
|
762 |
+
46,Female,66.5,1.73,163,142,56,1.11,709.0,Yoga,34.7,2.0,3,1,22.22
|
763 |
+
49,Female,70.2,1.67,186,166,50,0.93,695.0,Strength,32.5,1.8,3,1,25.17
|
764 |
+
36,Male,121.9,1.93,195,132,54,1.49,1082.0,Cardio,21.8,3.4,3,2,32.73
|
765 |
+
38,Female,70.3,1.52,164,144,66,1.19,857.0,Yoga,25.6,2.0,4,2,30.43
|
766 |
+
22,Female,40.3,1.56,192,121,57,1.45,877.0,HIIT,30.8,2.1,4,2,16.56
|
767 |
+
35,Male,101.4,1.76,193,121,64,0.84,559.0,HIIT,23.6,2.9,2,1,32.74
|
768 |
+
45,Male,79.2,1.95,189,135,69,1.47,982.0,Yoga,22.8,2.8,3,2,20.83
|
769 |
+
59,Female,75.8,1.77,167,128,53,1.46,841.0,Strength,33.1,1.8,3,1,24.19
|
770 |
+
39,Male,71.7,1.88,198,147,51,0.55,445.0,Cardio,23.7,2.2,2,1,20.29
|
771 |
+
38,Female,57.7,1.56,185,132,54,1.64,1082.0,HIIT,16.6,2.7,5,3,23.71
|
772 |
+
23,Female,47.4,1.6,196,154,50,0.76,585.0,Strength,33.5,1.6,3,1,18.52
|
773 |
+
18,Female,57.2,1.75,193,160,74,1.29,1032.0,Cardio,33.5,2.4,3,2,18.68
|
774 |
+
22,Female,44.8,1.72,166,132,54,1.48,977.0,Cardio,28.6,1.8,4,2,15.14
|
775 |
+
58,Male,90.2,1.72,199,150,55,0.9,668.0,HIIT,28.3,2.1,2,1,30.49
|
776 |
+
29,Male,84.9,1.72,187,140,51,1.79,1378.0,Yoga,14.3,3.5,4,3,28.7
|
777 |
+
43,Male,95.7,1.77,198,151,50,1.08,807.0,HIIT,24.2,3.4,3,1,30.55
|
778 |
+
51,Male,59.0,1.65,198,153,53,1.22,924.0,HIIT,20.7,2.3,3,2,21.67
|
779 |
+
31,Female,60.5,1.77,187,127,56,1.72,1092.0,HIIT,15.0,2.7,4,3,19.31
|
780 |
+
43,Female,53.8,1.72,173,160,71,1.03,742.0,Strength,30.2,2.3,4,2,18.19
|
781 |
+
44,Male,86.6,1.97,197,167,50,1.66,1372.0,Yoga,11.7,3.5,5,3,22.31
|
782 |
+
26,Female,72.8,1.67,163,121,50,1.37,829.0,Strength,35.0,1.9,2,1,26.1
|
783 |
+
43,Female,66.3,1.77,177,157,57,1.48,1046.0,HIIT,32.7,1.7,4,2,21.16
|
784 |
+
39,Female,56.0,1.6,184,151,69,0.89,672.0,Yoga,32.6,2.0,2,1,21.87
|
785 |
+
47,Male,45.9,1.93,166,159,65,1.29,1015.0,Cardio,29.6,2.0,3,2,12.32
|
786 |
+
34,Male,88.0,1.64,197,147,70,1.9,1536.0,Yoga,14.4,3.5,4,3,32.72
|
787 |
+
43,Male,94.0,1.79,187,156,62,1.31,1012.0,HIIT,23.2,3.4,2,1,29.34
|
788 |
+
53,Female,44.7,1.79,164,160,72,1.34,965.0,Yoga,26.7,2.1,3,2,13.95
|
789 |
+
18,Male,63.2,1.63,162,120,73,0.66,436.0,Cardio,27.5,2.2,3,1,23.79
|
790 |
+
25,Male,95.6,1.9,190,160,72,1.47,1294.0,Cardio,23.8,2.4,4,2,26.48
|
791 |
+
52,Male,47.8,1.86,179,129,67,1.01,645.0,Yoga,24.7,2.8,3,2,13.82
|
792 |
+
32,Male,85.3,1.64,178,123,69,1.77,1197.0,Cardio,13.2,3.5,4,3,31.71
|
793 |
+
39,Male,59.7,1.83,170,154,59,1.35,1143.0,Strength,29.1,2.3,4,2,17.83
|
794 |
+
31,Male,70.2,1.98,199,129,61,0.71,504.0,Yoga,24.2,2.5,2,1,17.91
|
795 |
+
43,Female,72.7,1.8,162,166,50,0.79,590.0,Cardio,32.8,2.1,3,1,22.44
|
796 |
+
45,Female,50.4,1.79,182,130,59,0.74,433.0,Cardio,27.7,2.5,2,1,15.73
|
797 |
+
40,Male,81.7,1.74,166,133,58,0.91,666.0,Yoga,27.0,2.7,2,1,26.99
|
798 |
+
31,Male,49.3,1.62,182,157,52,0.56,484.0,Strength,20.0,3.2,2,1,18.79
|
799 |
+
41,Female,61.9,1.64,166,131,68,1.93,1138.0,Yoga,19.4,2.7,4,3,23.01
|
800 |
+
19,Female,49.1,1.68,193,164,58,1.42,1164.0,Cardio,25.3,2.6,4,2,17.4
|
801 |
+
43,Male,66.5,1.83,178,136,59,1.11,747.0,Yoga,27.1,2.4,3,2,19.86
|
802 |
+
31,Male,75.5,1.93,168,135,68,0.6,446.0,Cardio,20.5,3.4,2,1,20.27
|
803 |
+
24,Male,88.2,1.79,177,154,65,1.76,1491.0,HIIT,11.3,3.5,4,3,27.53
|
804 |
+
20,Male,74.8,1.75,184,121,73,1.33,885.0,Yoga,25.0,3.3,3,2,24.42
|
805 |
+
40,Female,72.2,1.6,173,130,67,0.87,566.0,Yoga,29.2,1.9,3,1,28.2
|
806 |
+
35,Male,62.8,1.63,184,160,63,1.41,1241.0,Cardio,21.9,3.7,4,2,23.64
|
807 |
+
55,Male,84.7,1.79,178,122,52,1.19,719.0,Cardio,23.3,2.4,3,2,26.43
|
808 |
+
52,Male,116.5,1.69,198,148,51,0.53,388.0,Cardio,27.3,2.4,2,1,40.79
|
809 |
+
32,Male,77.4,1.92,174,137,50,1.39,1047.0,Cardio,26.7,3.3,3,2,21.0
|
810 |
+
42,Female,72.9,1.62,175,139,67,1.17,732.0,Yoga,25.7,2.0,4,2,27.78
|
811 |
+
54,Female,58.4,1.59,186,166,73,1.08,807.0,Cardio,32.5,1.9,2,1,23.1
|
812 |
+
45,Female,64.3,1.54,199,133,58,1.67,999.0,Yoga,15.3,2.7,4,3,27.11
|
813 |
+
27,Male,89.3,1.87,169,153,62,1.62,1363.0,Strength,12.7,3.5,5,3,25.54
|
814 |
+
56,Male,90.2,1.61,163,168,51,1.38,1148.0,Yoga,22.6,2.3,3,2,34.8
|
815 |
+
34,Female,59.0,1.62,178,150,56,1.13,847.0,Cardio,30.9,2.4,4,2,22.48
|
816 |
+
56,Male,58.7,1.86,187,159,65,1.09,858.0,Cardio,22.6,3.3,3,2,16.97
|
817 |
+
39,Male,127.5,1.82,180,161,70,1.26,1116.0,Strength,29.8,3.0,3,2,38.49
|
818 |
+
43,Female,68.6,1.52,173,137,68,1.42,875.0,Yoga,28.1,2.6,4,2,29.69
|
819 |
+
42,Female,56.7,1.53,192,149,74,1.07,717.0,Strength,27.4,1.9,3,1,24.22
|
820 |
+
34,Female,64.5,1.78,169,144,64,1.33,958.0,Yoga,27.8,1.8,4,2,20.36
|
821 |
+
30,Female,61.6,1.52,178,138,71,1.78,1228.0,Cardio,19.5,2.7,4,3,26.66
|
822 |
+
37,Male,75.1,1.82,189,127,60,1.23,859.0,Yoga,26.4,3.2,4,2,22.67
|
823 |
+
42,Male,79.3,1.93,181,147,50,1.22,888.0,Cardio,27.3,3.3,2,1,21.29
|
824 |
+
21,Female,72.6,1.68,162,127,70,1.19,756.0,Cardio,34.2,1.8,3,2,25.72
|
825 |
+
27,Male,76.7,1.7,196,150,56,0.96,792.0,HIIT,29.1,2.1,3,1,26.54
|
826 |
+
20,Female,44.2,1.61,177,122,69,1.08,659.0,HIIT,32.4,2.5,2,1,17.05
|
827 |
+
58,Female,56.5,1.7,170,122,57,0.74,406.0,Yoga,27.0,2.7,2,1,19.55
|
828 |
+
35,Male,100.9,1.63,161,163,59,1.1,986.0,Cardio,28.4,3.1,2,1,37.98
|
829 |
+
53,Female,55.8,1.55,171,141,54,1.12,711.0,Strength,27.0,1.8,4,2,23.23
|
830 |
+
39,Male,58.3,1.93,165,136,58,1.35,1010.0,Cardio,27.4,3.7,4,2,15.65
|
831 |
+
51,Male,48.6,1.77,199,155,74,1.47,1128.0,Strength,26.9,3.5,2,1,15.51
|
832 |
+
25,Male,81.7,1.95,188,136,74,1.94,1451.0,Yoga,13.8,3.5,4,3,21.49
|
833 |
+
57,Male,85.6,1.69,189,133,50,1.76,1159.0,Yoga,12.7,3.5,5,3,29.97
|
834 |
+
36,Female,60.0,1.72,161,128,51,1.63,1043.0,Strength,18.2,2.7,5,3,20.28
|
835 |
+
59,Male,126.4,1.69,168,149,68,1.24,915.0,Strength,29.5,2.9,3,1,44.26
|
836 |
+
58,Female,75.4,1.78,161,140,63,1.05,662.0,Cardio,26.0,2.5,4,2,23.8
|
837 |
+
54,Female,64.2,1.69,188,131,69,1.69,996.0,Yoga,16.5,2.7,4,3,22.48
|
838 |
+
23,Female,65.2,1.62,192,156,59,1.37,1069.0,Cardio,31.1,2.5,3,2,24.84
|
839 |
+
43,Female,70.1,1.66,169,151,58,0.99,673.0,Strength,34.6,2.6,2,1,25.44
|
840 |
+
51,Male,102.6,1.77,193,130,59,1.21,779.0,HIIT,21.0,3.4,2,1,32.75
|
841 |
+
23,Male,107.2,1.93,167,139,55,1.15,879.0,HIIT,20.2,3.1,4,2,28.78
|
842 |
+
54,Female,56.5,1.75,196,154,66,1.76,1220.0,HIIT,15.3,2.7,5,3,18.45
|
843 |
+
50,Female,61.6,1.75,192,166,74,1.22,911.0,Strength,25.5,2.2,4,2,20.11
|
844 |
+
39,Male,81.7,1.75,165,165,55,1.32,1198.0,Cardio,29.1,2.8,4,2,26.68
|
845 |
+
38,Female,76.6,1.58,199,130,53,0.74,481.0,Yoga,32.2,2.3,2,1,30.68
|
846 |
+
23,Male,116.8,1.79,178,127,69,1.0,698.0,Strength,26.8,3.4,4,2,36.45
|
847 |
+
23,Female,60.1,1.59,191,123,52,1.8,1107.0,HIIT,17.6,2.7,4,3,23.77
|
848 |
+
21,Male,93.7,1.73,186,146,72,1.0,803.0,Cardio,27.8,3.6,2,1,31.31
|
849 |
+
47,Female,41.6,1.58,160,163,68,1.03,756.0,Yoga,26.6,2.1,4,2,16.66
|
850 |
+
28,Female,55.1,1.79,192,159,67,1.99,1582.0,Yoga,17.0,2.7,5,3,17.2
|
851 |
+
47,Male,127.1,1.76,199,157,73,0.71,552.0,Strength,24.9,3.0,2,1,41.03
|
852 |
+
48,Female,69.1,1.6,191,166,53,1.34,1001.0,Strength,26.1,2.0,4,2,26.99
|
853 |
+
41,Female,66.8,1.74,164,149,57,1.34,898.0,Yoga,29.2,2.3,3,1,22.06
|
854 |
+
26,Male,125.5,1.76,176,163,66,1.15,1031.0,Yoga,23.2,3.1,4,2,40.52
|
855 |
+
20,Female,71.3,1.58,167,167,54,1.07,893.0,HIIT,25.4,1.5,3,2,28.56
|
856 |
+
48,Male,129.2,1.61,193,167,62,1.06,876.0,Yoga,21.4,2.9,4,2,49.84
|
857 |
+
57,Male,96.3,1.86,168,146,74,1.1,795.0,Strength,27.6,2.2,3,2,27.84
|
858 |
+
54,Female,67.5,1.54,182,140,50,0.72,454.0,Cardio,25.2,1.5,3,1,28.46
|
859 |
+
53,Female,64.4,1.55,194,139,62,1.77,1107.0,HIIT,19.7,2.7,4,3,26.81
|
860 |
+
41,Female,64.9,1.57,166,123,53,1.04,576.0,HIIT,25.9,2.4,4,2,26.33
|
861 |
+
48,Female,52.3,1.66,174,130,71,0.74,433.0,Yoga,33.0,1.8,3,1,18.98
|
862 |
+
23,Female,56.7,1.55,179,132,73,1.38,911.0,Cardio,34.0,1.9,4,2,23.6
|
863 |
+
19,Female,46.8,1.63,184,128,63,1.35,864.0,HIIT,34.4,1.6,4,2,17.61
|
864 |
+
37,Female,70.3,1.77,162,123,52,1.01,621.0,Strength,33.7,1.7,2,1,22.44
|
865 |
+
45,Male,80.8,1.76,183,131,54,1.7,1102.0,Yoga,11.4,3.5,4,3,26.08
|
866 |
+
28,Female,56.0,1.5,193,128,56,1.94,1242.0,Strength,16.7,2.7,5,3,24.89
|
867 |
+
21,Male,101.2,1.84,181,132,50,1.3,944.0,Yoga,24.3,3.3,2,1,29.89
|
868 |
+
32,Female,56.6,1.57,170,167,72,1.65,1378.0,HIIT,15.7,2.7,4,3,22.96
|
869 |
+
23,Female,40.9,1.75,167,145,61,0.82,594.0,Yoga,25.2,2.1,3,1,13.36
|
870 |
+
47,Male,127.8,1.65,198,157,60,0.77,598.0,Cardio,28.7,3.5,2,1,46.94
|
871 |
+
55,Female,49.3,1.76,194,161,73,1.28,927.0,Strength,30.5,2.0,2,1,15.92
|
872 |
+
19,Female,64.3,1.63,197,132,57,1.87,1234.0,Cardio,18.0,2.7,5,3,24.2
|
873 |
+
32,Male,49.3,1.62,167,158,74,1.18,1025.0,Strength,29.3,2.5,3,2,18.79
|
874 |
+
28,Female,63.0,1.62,196,147,55,0.68,500.0,Strength,31.7,1.9,2,1,24.01
|
875 |
+
25,Female,41.1,1.67,186,138,71,1.03,711.0,Yoga,31.9,2.4,3,2,14.74
|
876 |
+
43,Female,40.5,1.74,187,143,51,1.5,965.0,HIIT,32.9,2.2,3,2,13.38
|
877 |
+
22,Male,71.0,1.62,199,138,68,0.91,691.0,HIIT,21.2,3.5,2,1,27.05
|
878 |
+
23,Female,60.9,1.62,193,168,69,1.59,1336.0,Cardio,16.8,2.7,5,3,23.21
|
879 |
+
43,Female,64.7,1.66,191,132,69,1.88,1117.0,Yoga,19.8,2.7,4,3,23.48
|
880 |
+
21,Female,51.0,1.71,174,132,73,1.07,706.0,HIIT,34.2,2.2,3,2,17.44
|
881 |
+
36,Female,57.7,1.77,176,147,63,1.65,1213.0,Strength,19.4,2.7,4,3,18.42
|
882 |
+
37,Male,76.9,1.82,192,121,50,1.49,992.0,Strength,24.5,2.8,4,2,23.22
|
883 |
+
50,Male,80.5,1.77,175,129,59,1.85,1181.0,Yoga,14.3,3.5,4,3,25.7
|
884 |
+
37,Female,73.3,1.74,188,141,65,1.03,726.0,Cardio,25.5,2.4,3,2,24.21
|
885 |
+
29,Female,49.0,1.57,168,132,53,1.33,878.0,Yoga,26.5,2.6,3,2,19.88
|
886 |
+
18,Male,114.5,1.97,192,128,60,1.03,725.0,Cardio,24.1,2.6,3,1,29.5
|
887 |
+
43,Male,81.0,1.78,188,152,65,1.58,1189.0,Yoga,12.4,3.5,5,3,25.56
|
888 |
+
31,Female,53.5,1.76,172,133,69,1.22,811.0,Strength,27.6,1.8,4,2,17.27
|
889 |
+
55,Male,52.1,1.68,180,167,50,0.77,637.0,Yoga,23.6,3.0,3,1,18.46
|
890 |
+
54,Female,70.1,1.52,180,139,65,0.76,475.0,HIIT,26.6,2.1,2,1,30.34
|
891 |
+
28,Male,86.9,1.78,164,134,68,1.29,951.0,HIIT,24.9,3.7,4,2,27.43
|
892 |
+
53,Male,73.4,1.76,169,151,70,1.09,815.0,Yoga,27.9,2.8,3,2,23.7
|
893 |
+
30,Male,90.0,1.66,165,152,71,1.32,1104.0,Cardio,26.6,2.1,4,2,32.66
|
894 |
+
20,Male,85.7,1.92,172,136,58,1.72,1287.0,Cardio,10.5,3.5,5,3,23.25
|
895 |
+
50,Female,70.4,1.55,160,143,58,0.73,470.0,Strength,29.9,2.7,2,1,29.3
|
896 |
+
23,Male,57.7,1.71,179,149,58,1.15,942.0,Strength,27.0,3.4,3,2,19.73
|
897 |
+
27,Male,75.7,1.76,167,132,66,0.68,494.0,Cardio,25.3,2.3,3,1,24.44
|
898 |
+
22,Female,61.8,1.52,169,166,61,1.83,1519.0,Yoga,17.0,2.7,5,3,26.75
|
899 |
+
40,Male,80.3,1.76,168,167,74,1.63,1497.0,Strength,13.1,3.5,5,3,25.92
|
900 |
+
27,Male,104.3,1.68,162,135,62,1.28,950.0,Cardio,29.7,3.5,3,2,36.95
|
901 |
+
19,Female,65.7,1.58,170,121,57,1.46,883.0,Cardio,25.9,1.9,3,2,26.32
|
902 |
+
30,Male,120.3,1.96,171,136,65,0.66,494.0,Yoga,23.9,2.6,2,1,31.32
|
903 |
+
57,Female,51.9,1.57,169,151,67,1.05,713.0,HIIT,29.1,2.6,3,2,21.06
|
904 |
+
19,Female,59.1,1.57,184,162,50,1.65,1336.0,Cardio,17.9,2.7,5,3,23.98
|
905 |
+
37,Female,66.9,1.75,184,127,50,1.38,876.0,Strength,26.5,2.1,4,2,21.84
|
906 |
+
18,Female,66.9,1.75,170,122,61,0.94,573.0,Yoga,26.8,1.7,2,1,21.84
|
907 |
+
54,Male,78.7,1.66,195,131,55,1.42,921.0,Yoga,22.9,2.6,3,2,28.56
|
908 |
+
26,Female,62.4,1.61,198,139,58,1.88,1307.0,Yoga,19.8,2.7,4,3,24.07
|
909 |
+
34,Male,102.1,1.71,185,135,72,0.96,713.0,HIIT,27.3,3.2,2,1,34.92
|
910 |
+
26,Male,51.9,2.0,173,133,54,0.75,549.0,HIIT,26.6,2.3,2,1,12.97
|
911 |
+
28,Male,58.3,2.0,198,135,65,1.32,980.0,Strength,28.2,3.0,4,2,14.57
|
912 |
+
32,Male,89.8,1.92,199,168,67,1.93,1783.0,Strength,10.6,3.5,4,3,24.36
|
913 |
+
41,Male,101.1,1.83,160,162,66,0.79,634.0,Yoga,28.6,3.2,2,1,30.19
|
914 |
+
55,Male,118.6,1.72,163,168,67,0.77,640.0,Strength,25.9,2.6,3,1,40.09
|
915 |
+
52,Male,84.8,1.85,189,152,50,1.19,895.0,Cardio,23.4,3.2,2,1,24.78
|
916 |
+
47,Male,80.0,1.77,171,149,68,0.72,531.0,HIIT,28.2,3.5,3,1,25.54
|
917 |
+
48,Male,73.1,1.83,194,131,71,1.05,681.0,Yoga,28.0,2.8,4,2,21.83
|
918 |
+
22,Male,117.3,1.68,172,134,57,1.24,914.0,Yoga,28.5,2.7,3,2,41.56
|
919 |
+
31,Female,77.4,1.71,190,137,52,1.26,863.0,Cardio,26.2,1.8,4,2,26.47
|
920 |
+
28,Female,72.9,1.67,197,147,74,1.13,831.0,Cardio,34.7,2.2,3,2,26.14
|
921 |
+
26,Female,71.2,1.5,182,142,54,1.15,816.0,Cardio,34.6,2.6,2,1,31.64
|
922 |
+
51,Male,88.2,1.62,163,133,72,1.56,1027.0,Cardio,11.8,3.5,4,3,33.61
|
923 |
+
29,Female,75.6,1.8,175,149,57,1.31,976.0,Yoga,25.7,1.9,4,2,23.33
|
924 |
+
52,Female,57.9,1.56,166,152,68,1.66,1135.0,HIIT,15.8,2.7,4,3,23.79
|
925 |
+
52,Female,70.6,1.58,181,164,67,1.02,753.0,HIIT,34.9,2.0,3,2,28.28
|
926 |
+
18,Male,118.6,1.64,188,134,67,0.94,693.0,Cardio,25.6,2.7,3,1,44.1
|
927 |
+
57,Male,55.7,1.99,170,126,70,1.13,705.0,Strength,23.6,3.0,3,2,14.07
|
928 |
+
39,Male,102.3,1.94,192,134,50,0.89,656.0,Yoga,22.9,2.4,3,1,27.18
|
929 |
+
46,Male,72.6,1.87,188,161,64,1.31,1044.0,HIIT,22.6,3.4,4,2,20.76
|
930 |
+
25,Female,63.8,1.68,198,165,67,0.95,784.0,Cardio,31.6,1.9,2,1,22.6
|
931 |
+
28,Female,67.3,1.67,171,157,74,0.61,479.0,Strength,29.2,2.3,3,1,24.13
|
932 |
+
58,Female,59.3,1.58,166,165,56,1.97,1463.0,Strength,19.8,2.7,4,3,23.75
|
933 |
+
54,Female,70.7,1.57,198,163,65,1.14,836.0,Cardio,31.8,2.1,3,1,28.68
|
934 |
+
31,Male,86.9,1.69,185,130,65,1.72,1230.0,Yoga,14.0,3.5,4,3,30.43
|
935 |
+
47,Male,98.2,1.9,199,148,64,0.76,557.0,HIIT,22.9,3.0,3,1,27.2
|
936 |
+
52,Male,63.6,1.62,168,150,55,1.3,965.0,Strength,20.8,2.3,4,2,24.23
|
937 |
+
38,Female,45.2,1.68,193,144,58,1.01,727.0,HIIT,29.9,2.4,3,2,16.01
|
938 |
+
54,Male,117.2,1.62,172,143,56,1.04,736.0,HIIT,23.1,2.3,4,2,44.66
|
939 |
+
22,Male,107.4,1.74,195,138,63,1.34,1017.0,Strength,22.0,2.2,2,1,35.47
|
940 |
+
36,Female,59.1,1.78,184,121,60,0.85,514.0,Cardio,34.5,2.2,2,1,18.65
|
941 |
+
31,Female,53.3,1.64,183,141,70,0.57,402.0,Strength,29.4,2.4,3,1,19.82
|
942 |
+
43,Male,46.2,1.63,176,139,65,1.18,812.0,Strength,21.7,2.1,2,1,17.39
|
943 |
+
21,Male,67.0,1.61,161,152,74,1.32,1104.0,Yoga,22.0,2.1,3,2,25.85
|
944 |
+
42,Male,86.3,1.77,172,127,55,1.77,1113.0,HIIT,11.4,3.5,4,3,27.55
|
945 |
+
59,Male,85.5,1.67,190,144,71,1.99,1418.0,Cardio,15.0,3.5,5,3,30.66
|
946 |
+
42,Male,70.2,1.87,188,165,65,1.38,1127.0,HIIT,22.7,3.4,3,2,20.07
|
947 |
+
35,Male,127.1,1.62,187,128,69,1.02,718.0,Strength,23.3,3.4,4,2,48.43
|
948 |
+
57,Female,75.6,1.67,186,153,65,1.05,723.0,Cardio,31.6,1.8,3,2,27.11
|
949 |
+
25,Female,62.6,1.65,174,142,61,1.2,852.0,Cardio,27.9,2.2,3,1,22.99
|
950 |
+
56,Female,55.7,1.53,190,124,66,1.91,1066.0,Cardio,16.1,2.7,5,3,23.79
|
951 |
+
57,Male,96.1,1.74,199,144,54,1.21,862.0,Cardio,21.6,2.8,3,2,31.74
|
952 |
+
31,Female,76.7,1.62,174,127,74,1.39,883.0,Yoga,28.1,2.3,4,2,29.23
|
953 |
+
49,Male,57.2,1.89,192,135,62,1.14,762.0,Cardio,21.1,3.5,2,1,16.01
|
954 |
+
55,Male,69.9,1.81,179,167,57,1.2,992.0,Strength,20.2,2.1,4,2,21.34
|
955 |
+
50,Female,67.9,1.77,171,164,73,1.03,760.0,Yoga,33.0,2.4,3,2,21.67
|
956 |
+
40,Male,87.9,1.87,196,134,54,1.96,1445.0,Strength,10.7,3.5,5,3,25.14
|
957 |
+
32,Male,102.8,1.98,168,120,61,1.24,818.0,Strength,27.8,2.8,3,2,26.22
|
958 |
+
50,Female,51.8,1.5,182,141,58,1.32,838.0,HIIT,33.0,2.2,3,1,23.02
|
959 |
+
42,Female,57.7,1.57,167,122,52,1.83,1005.0,Cardio,17.7,2.7,4,3,23.41
|
960 |
+
34,Female,66.5,1.69,191,157,52,0.81,636.0,Cardio,28.1,2.3,3,1,23.28
|
961 |
+
50,Male,95.4,1.61,173,133,50,1.16,764.0,Strength,21.5,3.6,4,2,36.8
|
962 |
+
19,Female,69.2,1.6,186,155,74,1.17,907.0,Cardio,32.4,1.6,3,1,27.03
|
963 |
+
31,Female,66.6,1.67,184,137,71,1.02,699.0,Yoga,31.0,1.5,4,2,23.88
|
964 |
+
57,Male,83.4,1.65,172,166,67,1.57,1290.0,HIIT,13.3,3.5,4,3,30.63
|
965 |
+
57,Female,43.8,1.75,180,160,73,1.39,1001.0,Cardio,25.1,1.7,2,1,14.3
|
966 |
+
56,Female,64.2,1.69,190,137,61,1.99,1227.0,Cardio,19.6,2.7,5,3,22.48
|
967 |
+
23,Female,44.1,1.62,196,122,58,0.58,354.0,Yoga,25.7,2.7,2,1,16.8
|
968 |
+
23,Male,87.3,1.91,164,129,58,1.87,1327.0,HIIT,11.8,3.5,5,3,23.93
|
969 |
+
20,Male,55.0,1.6,172,168,67,1.12,1035.0,Yoga,24.0,3.2,4,2,21.48
|
970 |
+
24,Male,87.1,1.74,187,158,67,1.57,1364.0,Strength,10.0,3.5,4,3,28.77
|
971 |
+
25,Male,66.6,1.61,184,166,56,1.38,1260.0,Strength,25.0,3.0,2,1,25.69
|
972 |
+
59,Female,60.4,1.76,194,120,53,1.72,929.0,Cardio,18.8,2.7,5,3,19.5
|
973 |
+
32,Male,126.4,1.83,198,146,62,1.1,883.0,HIIT,28.2,2.1,3,2,37.74
|
974 |
+
46,Male,88.7,1.63,166,146,66,0.75,542.0,Strength,28.8,3.5,2,1,33.38
|
data/svm_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:671d28e2a909bb2e205bc85963b80e475ebfdbdccec3e55f4de627ee74288592
|
3 |
+
size 72525
|
data/svr_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e42da5f5f7fd5af5491b7d8f42a29f9ea4a745a064a2f30b8e1ad9d1265afee7
|
3 |
+
size 67243
|
data/svr_y_norms.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
y_mean,y_std
|
2 |
+
2.576725304465494,0.5868704321355046
|