Changes paths for file import
Browse files- SVM/SVM_C.py +125 -125
SVM/SVM_C.py
CHANGED
@@ -1,125 +1,125 @@
|
|
1 |
-
import os
|
2 |
-
import pickle
|
3 |
-
import pandas as pd
|
4 |
-
|
5 |
-
class SVM_Classifier:
|
6 |
-
def __init__(self):
|
7 |
-
|
8 |
-
self.weight = 70 # default weight in kg
|
9 |
-
self.height = 1.75 # default height in m
|
10 |
-
self.gender = "Male" # default gender
|
11 |
-
self.duration = 1.0 # default duration in hours
|
12 |
-
self.fat = 25 # default fat percentage
|
13 |
-
self.freq = 3 # default workouts per week
|
14 |
-
self.experience = 1 # default experience level
|
15 |
-
self.workout = "Cardio" # default workout type
|
16 |
-
|
17 |
-
# Add debug info dictionary
|
18 |
-
self.debug_info = {}
|
19 |
-
|
20 |
-
# Load the model and required data
|
21 |
-
try:
|
22 |
-
# Load the SVM model
|
23 |
-
model_file = os.path.join("
|
24 |
-
with open(model_file, 'rb') as f:
|
25 |
-
self.svm_model = pickle.load(f)
|
26 |
-
|
27 |
-
# Load the column names
|
28 |
-
cols_file = os.path.join("
|
29 |
-
with open(cols_file, 'r') as f:
|
30 |
-
self.column_names = [line.strip() for line in f]
|
31 |
-
|
32 |
-
# Load normalization parameters
|
33 |
-
mean_file = os.path.join("
|
34 |
-
self.df_mean = pd.read_csv(mean_file, index_col=0)
|
35 |
-
|
36 |
-
std_file = os.path.join("
|
37 |
-
self.df_std = pd.read_csv(std_file, index_col=0)
|
38 |
-
|
39 |
-
except Exception as e:
|
40 |
-
print(f"Error loading model files: {str(e)}")
|
41 |
-
raise
|
42 |
-
|
43 |
-
def make_prediction(self):
|
44 |
-
try:
|
45 |
-
num = [self.weight, self.height, self.duration, self.fat, self.freq, self.experience]
|
46 |
-
self.debug_info['original_values'] = dict(zip(
|
47 |
-
['weight', 'height', 'duration', 'fat', 'freq', 'experience'],
|
48 |
-
num
|
49 |
-
))
|
50 |
-
|
51 |
-
m_norm = self.df_mean.values.flatten().tolist()
|
52 |
-
s_norm = self.df_std.values.flatten().tolist()
|
53 |
-
self.debug_info['normalization'] = {
|
54 |
-
'means': m_norm,
|
55 |
-
'stds': s_norm
|
56 |
-
}
|
57 |
-
|
58 |
-
norm = [(x-y)/z for x, y, z in zip(num, m_norm, s_norm)]
|
59 |
-
self.debug_info['normalized_values'] = dict(zip(
|
60 |
-
['weight', 'height', 'duration', 'fat', 'freq', 'experience'],
|
61 |
-
norm
|
62 |
-
))
|
63 |
-
|
64 |
-
if self.gender == 'Female':
|
65 |
-
norm.extend([1,0])
|
66 |
-
self.debug_info['gender_encoding'] = 'Female: [1, 0]'
|
67 |
-
else:
|
68 |
-
norm.extend([0,1])
|
69 |
-
self.debug_info['gender_encoding'] = 'Male: [0, 1]'
|
70 |
-
|
71 |
-
# Add one-hot encoded workout type
|
72 |
-
workout_encoding = {
|
73 |
-
'Cardio': [1, 0, 0, 0],
|
74 |
-
'HIIT': [0, 1, 0, 0],
|
75 |
-
'Strength': [0, 0, 1, 0],
|
76 |
-
'Yoga': [0, 0, 0, 1]
|
77 |
-
}
|
78 |
-
norm.extend(workout_encoding[self.workout])
|
79 |
-
self.debug_info['workout_encoding'] = f'{self.workout}: {workout_encoding[self.workout]}'
|
80 |
-
|
81 |
-
X = pd.DataFrame([norm],columns=self.column_names)
|
82 |
-
self.debug_info['final_feature_vector'] = X.to_dict('records')[0]
|
83 |
-
|
84 |
-
prediction = self.svm_model.predict(X)
|
85 |
-
self.debug_info['prediction'] = prediction[0]
|
86 |
-
|
87 |
-
return prediction[0]
|
88 |
-
|
89 |
-
except Exception as e:
|
90 |
-
self.debug_info['error'] = str(e)
|
91 |
-
return f"Error: {str(e)}"
|
92 |
-
|
93 |
-
def get_debug_info(self):
|
94 |
-
"""Returns formatted debug information"""
|
95 |
-
debug_text = "=== DEBUG INFORMATION ===\n\n"
|
96 |
-
|
97 |
-
# Original values
|
98 |
-
debug_text += "Original Values:\n"
|
99 |
-
for key, value in self.debug_info['original_values'].items():
|
100 |
-
debug_text += f"{key}: {value}\n"
|
101 |
-
|
102 |
-
# Normalization parameters
|
103 |
-
debug_text += "\nNormalization Parameters:\n"
|
104 |
-
for i, (mean, std) in enumerate(zip(
|
105 |
-
self.debug_info['normalization']['means'],
|
106 |
-
self.debug_info['normalization']['stds']
|
107 |
-
)):
|
108 |
-
debug_text += f"Feature {i}: mean={mean:.4f}, std={std:.4f}\n"
|
109 |
-
|
110 |
-
# Normalized values
|
111 |
-
debug_text += "\nNormalized Values:\n"
|
112 |
-
for key, value in self.debug_info['normalized_values'].items():
|
113 |
-
debug_text += f"{key}: {value:.4f}\n"
|
114 |
-
|
115 |
-
# Encodings
|
116 |
-
debug_text += f"\nGender Encoding: {self.debug_info['gender_encoding']}\n"
|
117 |
-
debug_text += f"Workout Encoding: {self.debug_info['workout_encoding']}\n"
|
118 |
-
|
119 |
-
# Final vector
|
120 |
-
debug_text += f"\nVector: {self.debug_info['final_feature_vector']}\n"
|
121 |
-
|
122 |
-
# Final prediction
|
123 |
-
debug_text += f"\nFinal Prediction: {self.debug_info['prediction']}\n"
|
124 |
-
|
125 |
-
return debug_text
|
|
|
1 |
+
import os
|
2 |
+
import pickle
|
3 |
+
import pandas as pd
|
4 |
+
|
5 |
+
class SVM_Classifier:
|
6 |
+
def __init__(self):
|
7 |
+
|
8 |
+
self.weight = 70 # default weight in kg
|
9 |
+
self.height = 1.75 # default height in m
|
10 |
+
self.gender = "Male" # default gender
|
11 |
+
self.duration = 1.0 # default duration in hours
|
12 |
+
self.fat = 25 # default fat percentage
|
13 |
+
self.freq = 3 # default workouts per week
|
14 |
+
self.experience = 1 # default experience level
|
15 |
+
self.workout = "Cardio" # default workout type
|
16 |
+
|
17 |
+
# Add debug info dictionary
|
18 |
+
self.debug_info = {}
|
19 |
+
|
20 |
+
# Load the model and required data
|
21 |
+
try:
|
22 |
+
# Load the SVM model
|
23 |
+
model_file = os.path.join("data", "svm_model.pkl")
|
24 |
+
with open(model_file, 'rb') as f:
|
25 |
+
self.svm_model = pickle.load(f)
|
26 |
+
|
27 |
+
# Load the column names
|
28 |
+
cols_file = os.path.join("data", "column_names.csv")
|
29 |
+
with open(cols_file, 'r') as f:
|
30 |
+
self.column_names = [line.strip() for line in f]
|
31 |
+
|
32 |
+
# Load normalization parameters
|
33 |
+
mean_file = os.path.join("data", "SVM_train_mean.csv")
|
34 |
+
self.df_mean = pd.read_csv(mean_file, index_col=0)
|
35 |
+
|
36 |
+
std_file = os.path.join("data", "SVM_train_std.csv")
|
37 |
+
self.df_std = pd.read_csv(std_file, index_col=0)
|
38 |
+
|
39 |
+
except Exception as e:
|
40 |
+
print(f"Error loading model files: {str(e)}")
|
41 |
+
raise
|
42 |
+
|
43 |
+
def make_prediction(self):
|
44 |
+
try:
|
45 |
+
num = [self.weight, self.height, self.duration, self.fat, self.freq, self.experience]
|
46 |
+
self.debug_info['original_values'] = dict(zip(
|
47 |
+
['weight', 'height', 'duration', 'fat', 'freq', 'experience'],
|
48 |
+
num
|
49 |
+
))
|
50 |
+
|
51 |
+
m_norm = self.df_mean.values.flatten().tolist()
|
52 |
+
s_norm = self.df_std.values.flatten().tolist()
|
53 |
+
self.debug_info['normalization'] = {
|
54 |
+
'means': m_norm,
|
55 |
+
'stds': s_norm
|
56 |
+
}
|
57 |
+
|
58 |
+
norm = [(x-y)/z for x, y, z in zip(num, m_norm, s_norm)]
|
59 |
+
self.debug_info['normalized_values'] = dict(zip(
|
60 |
+
['weight', 'height', 'duration', 'fat', 'freq', 'experience'],
|
61 |
+
norm
|
62 |
+
))
|
63 |
+
|
64 |
+
if self.gender == 'Female':
|
65 |
+
norm.extend([1,0])
|
66 |
+
self.debug_info['gender_encoding'] = 'Female: [1, 0]'
|
67 |
+
else:
|
68 |
+
norm.extend([0,1])
|
69 |
+
self.debug_info['gender_encoding'] = 'Male: [0, 1]'
|
70 |
+
|
71 |
+
# Add one-hot encoded workout type
|
72 |
+
workout_encoding = {
|
73 |
+
'Cardio': [1, 0, 0, 0],
|
74 |
+
'HIIT': [0, 1, 0, 0],
|
75 |
+
'Strength': [0, 0, 1, 0],
|
76 |
+
'Yoga': [0, 0, 0, 1]
|
77 |
+
}
|
78 |
+
norm.extend(workout_encoding[self.workout])
|
79 |
+
self.debug_info['workout_encoding'] = f'{self.workout}: {workout_encoding[self.workout]}'
|
80 |
+
|
81 |
+
X = pd.DataFrame([norm],columns=self.column_names)
|
82 |
+
self.debug_info['final_feature_vector'] = X.to_dict('records')[0]
|
83 |
+
|
84 |
+
prediction = self.svm_model.predict(X)
|
85 |
+
self.debug_info['prediction'] = prediction[0]
|
86 |
+
|
87 |
+
return prediction[0]
|
88 |
+
|
89 |
+
except Exception as e:
|
90 |
+
self.debug_info['error'] = str(e)
|
91 |
+
return f"Error: {str(e)}"
|
92 |
+
|
93 |
+
def get_debug_info(self):
|
94 |
+
"""Returns formatted debug information"""
|
95 |
+
debug_text = "=== DEBUG INFORMATION ===\n\n"
|
96 |
+
|
97 |
+
# Original values
|
98 |
+
debug_text += "Original Values:\n"
|
99 |
+
for key, value in self.debug_info['original_values'].items():
|
100 |
+
debug_text += f"{key}: {value}\n"
|
101 |
+
|
102 |
+
# Normalization parameters
|
103 |
+
debug_text += "\nNormalization Parameters:\n"
|
104 |
+
for i, (mean, std) in enumerate(zip(
|
105 |
+
self.debug_info['normalization']['means'],
|
106 |
+
self.debug_info['normalization']['stds']
|
107 |
+
)):
|
108 |
+
debug_text += f"Feature {i}: mean={mean:.4f}, std={std:.4f}\n"
|
109 |
+
|
110 |
+
# Normalized values
|
111 |
+
debug_text += "\nNormalized Values:\n"
|
112 |
+
for key, value in self.debug_info['normalized_values'].items():
|
113 |
+
debug_text += f"{key}: {value:.4f}\n"
|
114 |
+
|
115 |
+
# Encodings
|
116 |
+
debug_text += f"\nGender Encoding: {self.debug_info['gender_encoding']}\n"
|
117 |
+
debug_text += f"Workout Encoding: {self.debug_info['workout_encoding']}\n"
|
118 |
+
|
119 |
+
# Final vector
|
120 |
+
debug_text += f"\nVector: {self.debug_info['final_feature_vector']}\n"
|
121 |
+
|
122 |
+
# Final prediction
|
123 |
+
debug_text += f"\nFinal Prediction: {self.debug_info['prediction']}\n"
|
124 |
+
|
125 |
+
return debug_text
|