|
import os
|
|
import warnings
|
|
import pandas as pd
|
|
import numpy as np
|
|
from sklearn.ensemble import RandomForestClassifier
|
|
from sklearn.metrics import accuracy_score, classification_report
|
|
from sklearn.model_selection import train_test_split
|
|
from sklearn.preprocessing import MinMaxScaler
|
|
import matplotlib.pyplot as plt
|
|
import gradio as gr
|
|
|
|
|
|
|
|
class My_RandomForest:
|
|
def __init__(self):
|
|
self.target_column = "Experience_Level"
|
|
self.models = {
|
|
"Male": None,
|
|
"Female": None,
|
|
"Unspecified": None
|
|
}
|
|
|
|
|
|
self.n_estimators = 10000
|
|
self.max_depth = 4
|
|
self.max_features = 'sqrt'
|
|
self.criterion = 'gini'
|
|
|
|
self.accuracies = {"Male": None, "Female": None, "Unspecified": None}
|
|
|
|
self.selected_features = {
|
|
"Male": ["Workout_Frequency (days/week)", "Session_Duration (hours)", "Water_Intake (liters)"],
|
|
"Female": ["Workout_Frequency (days/week)", "Session_Duration (hours)", "Water_Intake (liters)"],
|
|
"Unspecified": ["Workout_Frequency (days/week)", "Session_Duration (hours)", "Water_Intake (liters)"]
|
|
}
|
|
|
|
self.scaler = MinMaxScaler()
|
|
self.init_dataset()
|
|
|
|
def init_dataset(self):
|
|
|
|
csv_file = os.path.join("app", "data", "gym_members_exercise_tracking.csv")
|
|
df_original = pd.read_csv(csv_file)
|
|
self.df_original = df_original
|
|
|
|
def train_model(self, gender="Unspecified"):
|
|
if gender not in self.models:
|
|
raise ValueError("Invalid gender specified. Choose from 'Male', 'Female', or 'Unspecified'.")
|
|
|
|
|
|
if gender == "Male":
|
|
df_filtered = self.df_original[self.df_original["Gender"] == "Male"]
|
|
elif gender == "Female":
|
|
df_filtered = self.df_original[self.df_original["Gender"] == "Female"]
|
|
else:
|
|
df_filtered = self.df_original
|
|
|
|
features = self.selected_features[gender]
|
|
X = df_filtered[features]
|
|
y = df_filtered[self.target_column]
|
|
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
|
|
|
|
|
self.scaler.fit(X_train)
|
|
X_train = self.scaler.transform(X_train)
|
|
X_test = self.scaler.transform(X_test)
|
|
|
|
|
|
model = RandomForestClassifier(
|
|
n_estimators=self.n_estimators,
|
|
max_depth=self.max_depth,
|
|
max_features=self.max_features,
|
|
criterion=self.criterion,
|
|
random_state=42
|
|
)
|
|
model.fit(X_train, y_train)
|
|
|
|
|
|
y_pred = model.predict(X_test)
|
|
accuracy = accuracy_score(y_test, y_pred)
|
|
|
|
|
|
|
|
|
|
|
|
self.models[gender] = model
|
|
self.accuracies[gender] = accuracy
|
|
|
|
def predict(self, input_data: pd.DataFrame, gender="Unspecified"):
|
|
if gender not in self.models or self.models[gender] is None:
|
|
raise ValueError(f"Model for {gender} is not trained yet.")
|
|
|
|
features = self.selected_features[gender]
|
|
scaled_input = self.scaler.transform(input_data[features])
|
|
prediction = self.models[gender].predict(scaled_input)
|
|
return prediction
|
|
|
|
|
|
|
|
|