Spaces:
Build error
Build error
Commit
·
e6f0893
1
Parent(s):
f75f33e
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import time
|
8 |
+
import json
|
9 |
+
import re
|
10 |
+
import os
|
11 |
+
import asyncio
|
12 |
+
|
13 |
+
|
14 |
+
# -------------------------------
|
15 |
+
# Utility Functions
|
16 |
+
# -------------------------------
|
17 |
+
|
18 |
+
token = "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"
|
19 |
+
os.environ['CURL_CA_BUNDLE'] = ''
|
20 |
+
|
21 |
+
@st.cache_resource
|
22 |
+
def load_model(model_id: str, token: str):
|
23 |
+
"""
|
24 |
+
Loads and caches the Gemma model and tokenizer with authentication token.
|
25 |
+
"""
|
26 |
+
try:
|
27 |
+
# Create and run an event loop explicitly
|
28 |
+
asyncio.run(async_load(model_id, token))
|
29 |
+
|
30 |
+
# Ensure torch classes path is valid (optional)
|
31 |
+
if not hasattr(torch, "classes") or not torch.classes:
|
32 |
+
torch.classes = torch._C._get_python_module("torch.classes")
|
33 |
+
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, token=token)
|
35 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, token=token)
|
36 |
+
|
37 |
+
return tokenizer, model
|
38 |
+
|
39 |
+
except Exception as e:
|
40 |
+
print(f"An error occurred: {e}")
|
41 |
+
st.error(f"Model loading failed: {e}")
|
42 |
+
return None, None
|
43 |
+
|
44 |
+
async def async_load(model_id, token):
|
45 |
+
"""
|
46 |
+
Dummy async function to initialize the event loop.
|
47 |
+
"""
|
48 |
+
await asyncio.sleep(0.1) # Dummy async operation
|
49 |
+
|
50 |
+
def preprocess_data(uploaded_file, file_extension):
|
51 |
+
"""
|
52 |
+
Reads the uploaded file and returns a processed version.
|
53 |
+
Supports CSV, JSONL, and TXT.
|
54 |
+
"""
|
55 |
+
data = None
|
56 |
+
try:
|
57 |
+
if file_extension == "csv":
|
58 |
+
data = pd.read_csv(uploaded_file)
|
59 |
+
elif file_extension == "jsonl":
|
60 |
+
# Each line is a JSON object.
|
61 |
+
data = [json.loads(line) for line in uploaded_file.readlines()]
|
62 |
+
try:
|
63 |
+
data = pd.DataFrame(data)
|
64 |
+
except Exception:
|
65 |
+
st.warning("Unable to convert JSONL to a table. Previewing raw JSON objects.")
|
66 |
+
elif file_extension == "txt":
|
67 |
+
text_data = uploaded_file.read().decode("utf-8")
|
68 |
+
data = text_data.splitlines()
|
69 |
+
except Exception as e:
|
70 |
+
st.error(f"Error processing file: {e}")
|
71 |
+
return data
|
72 |
+
|
73 |
+
def clean_text(text, lowercase=True, remove_punctuation=True):
|
74 |
+
"""
|
75 |
+
Cleans text data by applying basic normalization.
|
76 |
+
"""
|
77 |
+
if lowercase:
|
78 |
+
text = text.lower()
|
79 |
+
if remove_punctuation:
|
80 |
+
text = re.sub(r'[^\w\s]', '', text)
|
81 |
+
return text
|
82 |
+
|
83 |
+
def plot_training_metrics(epochs, loss_values, accuracy_values):
|
84 |
+
"""
|
85 |
+
Returns a matplotlib figure plotting training loss and accuracy.
|
86 |
+
"""
|
87 |
+
fig, ax = plt.subplots(1, 2, figsize=(12, 4))
|
88 |
+
ax[0].plot(range(1, epochs+1), loss_values, marker='o', color='red')
|
89 |
+
ax[0].set_title("Training Loss")
|
90 |
+
ax[0].set_xlabel("Epoch")
|
91 |
+
ax[0].set_ylabel("Loss")
|
92 |
+
|
93 |
+
ax[1].plot(range(1, epochs+1), accuracy_values, marker='o', color='green')
|
94 |
+
ax[1].set_title("Training Accuracy")
|
95 |
+
ax[1].set_xlabel("Epoch")
|
96 |
+
ax[1].set_ylabel("Accuracy")
|
97 |
+
|
98 |
+
return fig
|
99 |
+
|
100 |
+
def simulate_training(num_epochs):
|
101 |
+
"""
|
102 |
+
Simulates a training loop for demonstration.
|
103 |
+
Yields current epoch, loss values, and accuracy values.
|
104 |
+
Replace this with your actual fine-tuning loop.
|
105 |
+
"""
|
106 |
+
loss_values = []
|
107 |
+
accuracy_values = []
|
108 |
+
for epoch in range(1, num_epochs + 1):
|
109 |
+
loss = np.exp(-epoch) + np.random.random() * 0.1
|
110 |
+
acc = 0.5 + (epoch / num_epochs) * 0.5 + np.random.random() * 0.05
|
111 |
+
loss_values.append(loss)
|
112 |
+
accuracy_values.append(acc)
|
113 |
+
yield epoch, loss_values, accuracy_values
|
114 |
+
time.sleep(1) # Simulate computation time
|
115 |
+
|
116 |
+
def quantize_model(model):
|
117 |
+
"""
|
118 |
+
Applies dynamic quantization for demonstration.
|
119 |
+
In practice, adjust this based on your model and target hardware.
|
120 |
+
"""
|
121 |
+
quantized_model = torch.quantization.quantize_dynamic(
|
122 |
+
model, {torch.nn.Linear}, dtype=torch.qint8
|
123 |
+
)
|
124 |
+
return quantized_model
|
125 |
+
|
126 |
+
def convert_to_torchscript(model):
|
127 |
+
"""
|
128 |
+
Converts the model to TorchScript format.
|
129 |
+
"""
|
130 |
+
example_input = torch.randint(0, 100, (1, 10))
|
131 |
+
traced_model = torch.jit.trace(model, example_input)
|
132 |
+
return traced_model
|
133 |
+
|
134 |
+
def convert_to_onnx(model, output_path="model.onnx"):
|
135 |
+
"""
|
136 |
+
Converts the model to ONNX format.
|
137 |
+
"""
|
138 |
+
dummy_input = torch.randint(0, 100, (1, 10))
|
139 |
+
torch.onnx.export(model, dummy_input, output_path, input_names=["input"], output_names=["output"])
|
140 |
+
return output_path
|
141 |
+
|
142 |
+
def load_finetuned_model(model, checkpoint_path="fine_tuned_model.pt"):
|
143 |
+
"""
|
144 |
+
Loads the fine-tuned model from the checkpoint.
|
145 |
+
"""
|
146 |
+
if os.path.exists(checkpoint_path):
|
147 |
+
model.load_state_dict(torch.load(checkpoint_path, map_location=torch.device('cpu')))
|
148 |
+
model.eval()
|
149 |
+
st.success("Fine-tuned model loaded successfully!")
|
150 |
+
else:
|
151 |
+
st.error(f"Checkpoint not found: {checkpoint_path}")
|
152 |
+
return model
|
153 |
+
|
154 |
+
|
155 |
+
def generate_response(prompt, model, tokenizer, max_length=200):
|
156 |
+
"""
|
157 |
+
Generates a response using the fine-tuned model.
|
158 |
+
"""
|
159 |
+
# Tokenize the prompt
|
160 |
+
inputs = tokenizer(prompt, return_tensors="pt").input_ids
|
161 |
+
|
162 |
+
# Generate text
|
163 |
+
with torch.no_grad():
|
164 |
+
outputs = model.generate(inputs, max_length=max_length, num_return_sequences=1, temperature=0.7)
|
165 |
+
|
166 |
+
# Decode the output
|
167 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
168 |
+
return response
|
169 |
+
|
170 |
+
|
171 |
+
# -------------------------------
|
172 |
+
# Application Layout
|
173 |
+
# -------------------------------
|
174 |
+
|
175 |
+
st.title("One-Stop Gemma Model Fine-tuning, Quantization & Conversion UI")
|
176 |
+
st.markdown("""
|
177 |
+
This application is designed for beginners in generative AI.
|
178 |
+
It allows you to fine-tune, quantize, and convert Gemma models with an intuitive UI.
|
179 |
+
You can upload your dataset, clean and preview your data, configure training parameters, and export your model in different formats.
|
180 |
+
""")
|
181 |
+
|
182 |
+
# Sidebar: Model selection and data upload
|
183 |
+
st.sidebar.header("Configuration")
|
184 |
+
|
185 |
+
# Model Selection
|
186 |
+
selected_model = st.sidebar.selectbox("Select Gemma Model", options=["Gemma-Small", "Gemma-Medium", "Gemma-Large"])
|
187 |
+
if selected_model == "google/gemma-3-1b-it":
|
188 |
+
model_id = "google/gemma-3-1b-it"
|
189 |
+
elif selected_model == "google/gemma-3-4b-it":
|
190 |
+
model_id = "google/gemma-3-4b-it"
|
191 |
+
else:
|
192 |
+
model_id = "google/gemma-3-1b-it"
|
193 |
+
|
194 |
+
loading_placeholder = st.sidebar.empty()
|
195 |
+
loading_placeholder.info("Loading model...")
|
196 |
+
tokenizer, model = load_model(model_id, token)
|
197 |
+
loading_placeholder.success("Model loaded.")
|
198 |
+
|
199 |
+
|
200 |
+
# Dataset Upload
|
201 |
+
uploaded_file = st.sidebar.file_uploader("Upload Dataset (CSV, JSONL, TXT)", type=["csv", "jsonl", "txt"])
|
202 |
+
data = None
|
203 |
+
if uploaded_file is not None:
|
204 |
+
file_ext = uploaded_file.name.split('.')[-1].lower()
|
205 |
+
data = preprocess_data(uploaded_file, file_ext)
|
206 |
+
st.sidebar.subheader("Dataset Preview:")
|
207 |
+
if isinstance(data, pd.DataFrame):
|
208 |
+
st.sidebar.dataframe(data.head())
|
209 |
+
elif isinstance(data, list):
|
210 |
+
st.sidebar.write(data[:5])
|
211 |
+
else:
|
212 |
+
st.sidebar.write(data)
|
213 |
+
else:
|
214 |
+
st.sidebar.info("Awaiting dataset upload.")
|
215 |
+
|
216 |
+
# Data Cleaning Options (for TXT files)
|
217 |
+
if uploaded_file is not None and file_ext == "txt":
|
218 |
+
st.sidebar.subheader("Data Cleaning Options")
|
219 |
+
lowercase_option = st.sidebar.checkbox("Convert to lowercase", value=True)
|
220 |
+
remove_punct = st.sidebar.checkbox("Remove punctuation", value=True)
|
221 |
+
cleaned_data = [clean_text(line, lowercase=lowercase_option, remove_punctuation=remove_punct) for line in data]
|
222 |
+
st.sidebar.text_area("Cleaned Data Preview", value="\n".join(cleaned_data[:5]), height=150)
|
223 |
+
|
224 |
+
# Main Tabs for Different Operations
|
225 |
+
tabs = st.tabs(["Fine-tuning", "Quantization", "Model Conversion"])
|
226 |
+
|
227 |
+
# -------------------------------
|
228 |
+
# Fine-tuning Tab
|
229 |
+
# -------------------------------
|
230 |
+
with tabs[0]:
|
231 |
+
st.header("Fine-tuning")
|
232 |
+
st.markdown("Configure hyperparameters and start fine-tuning your Gemma model.")
|
233 |
+
|
234 |
+
col1, col2, col3 = st.columns(3)
|
235 |
+
with col1:
|
236 |
+
learning_rate = st.number_input("Learning Rate", value=1e-4, format="%.5f")
|
237 |
+
with col2:
|
238 |
+
batch_size = st.number_input("Batch Size", value=16, step=1)
|
239 |
+
with col3:
|
240 |
+
epochs = st.number_input("Epochs", value=3, step=1)
|
241 |
+
|
242 |
+
if st.button("Start Fine-tuning"):
|
243 |
+
if data is None:
|
244 |
+
st.error("Please upload a dataset first!")
|
245 |
+
else:
|
246 |
+
st.info("Starting fine-tuning...")
|
247 |
+
progress_bar = st.progress(0)
|
248 |
+
training_placeholder = st.empty()
|
249 |
+
loss_values = []
|
250 |
+
accuracy_values = []
|
251 |
+
|
252 |
+
# Simulate training loop (replace with your actual training code)
|
253 |
+
for epoch, losses, accs in simulate_training(epochs):
|
254 |
+
fig = plot_training_metrics(epoch, losses, accs)
|
255 |
+
training_placeholder.pyplot(fig)
|
256 |
+
progress_bar.progress(epoch/epochs)
|
257 |
+
st.success("Fine-tuning completed!")
|
258 |
+
|
259 |
+
# Save the fine-tuned model (for demonstration, saving state_dict)
|
260 |
+
if model:
|
261 |
+
torch.save(model.state_dict(), "fine_tuned_model.pt")
|
262 |
+
with open("fine_tuned_model.pt", "rb") as f:
|
263 |
+
st.download_button("Download Fine-tuned Model", data=f, file_name="fine_tuned_model.pt", mime="application/octet-stream")
|
264 |
+
else:
|
265 |
+
st.error("Model not loaded. Cannot save.")
|
266 |
+
|
267 |
+
|
268 |
+
# -------------------------------
|
269 |
+
# Quantization Tab
|
270 |
+
# -------------------------------
|
271 |
+
with tabs[1]:
|
272 |
+
st.header("Model Quantization")
|
273 |
+
st.markdown("Quantize your model to optimize for inference performance.")
|
274 |
+
quantize_choice = st.radio("Select Quantization Type", options=["Dynamic Quantization"], index=0)
|
275 |
+
|
276 |
+
if st.button("Apply Quantization"):
|
277 |
+
with st.spinner("Applying quantization..."):
|
278 |
+
quantized_model = quantize_model(model)
|
279 |
+
st.success("Model quantized successfully!")
|
280 |
+
torch.save(quantized_model.state_dict(), "quantized_model.pt")
|
281 |
+
with open("quantized_model.pt", "rb") as f:
|
282 |
+
st.download_button("Download Quantized Model", data=f, file_name="quantized_model.pt", mime="application/octet-stream")
|
283 |
+
|
284 |
+
# -------------------------------
|
285 |
+
# Model Conversion Tab
|
286 |
+
# -------------------------------
|
287 |
+
with tabs[2]:
|
288 |
+
st.header("Model Conversion")
|
289 |
+
st.markdown("Convert your model to a different format for deployment or optimization.")
|
290 |
+
conversion_option = st.selectbox("Select Conversion Format", options=["TorchScript", "ONNX"])
|
291 |
+
|
292 |
+
if st.button("Convert Model"):
|
293 |
+
if conversion_option == "TorchScript":
|
294 |
+
with st.spinner("Converting to TorchScript..."):
|
295 |
+
ts_model = convert_to_torchscript(model)
|
296 |
+
ts_model.save("model_ts.pt")
|
297 |
+
st.success("Converted to TorchScript!")
|
298 |
+
with open("model_ts.pt", "rb") as f:
|
299 |
+
st.download_button("Download TorchScript Model", data=f, file_name="model_ts.pt", mime="application/octet-stream")
|
300 |
+
elif conversion_option == "ONNX":
|
301 |
+
with st.spinner("Converting to ONNX..."):
|
302 |
+
onnx_path = convert_to_onnx(model, "model.onnx")
|
303 |
+
st.success("Converted to ONNX!")
|
304 |
+
with open(onnx_path, "rb") as f:
|
305 |
+
st.download_button("Download ONNX Model", data=f, file_name="model.onnx", mime="application/octet-stream")
|
306 |
+
|
307 |
+
# -------------------------------
|
308 |
+
# Response Generation Section
|
309 |
+
# -------------------------------
|
310 |
+
st.header("Generate Responses with Fine-Tuned Model")
|
311 |
+
st.markdown("Use the fine-tuned model to generate text responses based on your prompts.")
|
312 |
+
|
313 |
+
# Check if the fine-tuned model exists
|
314 |
+
if os.path.exists("fine_tuned_model.pt"):
|
315 |
+
# Load the fine-tuned model
|
316 |
+
model = load_finetuned_model(model, "fine_tuned_model.pt")
|
317 |
+
|
318 |
+
# Input prompt for generating responses
|
319 |
+
prompt = st.text_area("Enter a prompt:", "Once upon a time...")
|
320 |
+
|
321 |
+
# Max length slider
|
322 |
+
max_length = st.slider("Max Response Length", min_value=50, max_value=500, value=200, step=10)
|
323 |
+
|
324 |
+
if st.button("Generate Response"):
|
325 |
+
with st.spinner("Generating response..."):
|
326 |
+
response = generate_response(prompt, model, tokenizer, max_length)
|
327 |
+
st.success("Generated Response:")
|
328 |
+
st.write(response)
|
329 |
+
|
330 |
+
else:
|
331 |
+
st.warning("Fine-tuned model not found. Please fine-tune the model first.")
|
332 |
+
|
333 |
+
|
334 |
+
# -------------------------------
|
335 |
+
# Optional: Cloud Integration Snippet
|
336 |
+
# -------------------------------
|
337 |
+
st.header("Cloud Integration")
|
338 |
+
st.markdown("""
|
339 |
+
For large-scale training or model storage, consider integrating with Google Cloud Storage or Vertex AI.
|
340 |
+
Below is an example snippet for uploading your model to GCS:
|
341 |
+
""")
|
342 |
+
st.code("""
|
343 |
+
from google.cloud import storage
|
344 |
+
|
345 |
+
def upload_to_gcs(bucket_name, source_file_name, destination_blob_name):
|
346 |
+
storage_client = storage.Client()
|
347 |
+
bucket = storage_client.bucket(bucket_name)
|
348 |
+
blob = bucket.blob(destination_blob_name)
|
349 |
+
blob.upload_from_filename(source_file_name)
|
350 |
+
print(f"Uploaded {source_file_name} to {destination_blob_name}")
|
351 |
+
|
352 |
+
# Example usage:
|
353 |
+
# upload_to_gcs("your-bucket-name", "fine_tuned_model.pt", "models/fine_tuned_model.pt")
|
354 |
+
""", language="python")
|