Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pdfplumber
|
3 |
+
from PIL import Image
|
4 |
+
import pytesseract
|
5 |
+
import io
|
6 |
+
import re
|
7 |
+
import random
|
8 |
+
|
9 |
+
from transformers import pipeline
|
10 |
+
|
11 |
+
# Load question generation pipeline
|
12 |
+
# Using valhalla/t5-base-qg-hl for question generation with highlighting support
|
13 |
+
qg_pipeline = pipeline("text2text-generation", model="valhalla/t5-base-qg-hl")
|
14 |
+
|
15 |
+
# Load summarization pipeline for key sentence extraction (to identify key concepts)
|
16 |
+
summarizer = pipeline("summarization")
|
17 |
+
|
18 |
+
def extract_text_from_pdf(file_bytes):
|
19 |
+
try:
|
20 |
+
text = ""
|
21 |
+
with pdfplumber.open(io.BytesIO(file_bytes)) as pdf:
|
22 |
+
for page in pdf.pages:
|
23 |
+
page_text = page.extract_text()
|
24 |
+
if page_text:
|
25 |
+
text += page_text + "\n"
|
26 |
+
# If extracted text is empty, fallback to OCR per page
|
27 |
+
if not text.strip():
|
28 |
+
text = ocr_pdf(file_bytes)
|
29 |
+
return text
|
30 |
+
except Exception as e:
|
31 |
+
return ""
|
32 |
+
|
33 |
+
def ocr_pdf(file_bytes):
|
34 |
+
text = ""
|
35 |
+
with pdfplumber.open(io.BytesIO(file_bytes)) as pdf:
|
36 |
+
for page in pdf.pages:
|
37 |
+
# Convert page to image
|
38 |
+
pil_image = page.to_image(resolution=300).original
|
39 |
+
# OCR
|
40 |
+
page_text = pytesseract.image_to_string(pil_image)
|
41 |
+
text += page_text + "\n"
|
42 |
+
return text
|
43 |
+
|
44 |
+
def extract_text_from_image(file_bytes):
|
45 |
+
image = Image.open(io.BytesIO(file_bytes))
|
46 |
+
text = pytesseract.image_to_string(image)
|
47 |
+
return text
|
48 |
+
|
49 |
+
def extract_text_from_txt(file_bytes):
|
50 |
+
try:
|
51 |
+
text = file_bytes.decode("utf-8")
|
52 |
+
except UnicodeDecodeError:
|
53 |
+
text = file_bytes.decode("latin-1")
|
54 |
+
return text
|
55 |
+
|
56 |
+
def clean_text(text):
|
57 |
+
# Clean excessive new lines and spaces
|
58 |
+
text = re.sub(r'\n+', '\n', text)
|
59 |
+
text = re.sub(r'[ ]{2,}', ' ', text)
|
60 |
+
return text.strip()
|
61 |
+
|
62 |
+
def split_to_sentences(text):
|
63 |
+
# Simple split by periods, question marks, and exclamation
|
64 |
+
sentences = re.split(r'(?<=[.?!])\s+', text)
|
65 |
+
return [s.strip() for s in sentences if s.strip()]
|
66 |
+
|
67 |
+
def highlight_answer_in_context(context, answer):
|
68 |
+
# Highlight answer in context for the qg model input format
|
69 |
+
# The model uses <hl> tokens to highlight answer: context <hl> answer <hl>
|
70 |
+
# We find answer in context and mark it
|
71 |
+
# If no direct answer found, just return context unchanged
|
72 |
+
idx = context.lower().find(answer.lower())
|
73 |
+
if idx != -1:
|
74 |
+
part1 = context[:idx]
|
75 |
+
part2 = context[idx+len(answer):]
|
76 |
+
return f"{part1.strip()} <hl> {answer.strip()} <hl> {part2.strip()}"
|
77 |
+
else:
|
78 |
+
return context
|
79 |
+
|
80 |
+
def generate_mcq(question_text):
|
81 |
+
'''
|
82 |
+
Generate MCQ with 1 correct + 3 incorrect options.
|
83 |
+
Since no direct distractor generation model, we'll generate distractors by rephrasing or random shuffling.
|
84 |
+
Here, for demonstration, we create options by slight modifications to the correct answer.
|
85 |
+
'''
|
86 |
+
correct_answer = question_text
|
87 |
+
|
88 |
+
# Generate plausible options by shuffling words or changing order
|
89 |
+
words = correct_answer.split()
|
90 |
+
options = set()
|
91 |
+
options.add(correct_answer)
|
92 |
+
|
93 |
+
while len(options) < 4:
|
94 |
+
if len(words) > 1:
|
95 |
+
shuffled = words[:]
|
96 |
+
random.shuffle(shuffled)
|
97 |
+
option = ' '.join(shuffled)
|
98 |
+
if option.lower() != correct_answer.lower():
|
99 |
+
options.add(option)
|
100 |
+
else:
|
101 |
+
# If single word, generate random similar words (basic approach)
|
102 |
+
option = correct_answer + random.choice(['.', ',', '?', '!'])
|
103 |
+
options.add(option)
|
104 |
+
|
105 |
+
options = list(options)
|
106 |
+
random.shuffle(options)
|
107 |
+
|
108 |
+
# Determine the letter of correct answer
|
109 |
+
correct_letter = 'ABCD'[options.index(correct_answer)]
|
110 |
+
|
111 |
+
return options, correct_letter
|
112 |
+
|
113 |
+
def generate_questions_mcq(context, num_questions):
|
114 |
+
'''
|
115 |
+
Generate MCQ questions based on context
|
116 |
+
'''
|
117 |
+
sentences = split_to_sentences(context)
|
118 |
+
questions_structured = []
|
119 |
+
used_questions = set()
|
120 |
+
|
121 |
+
# Limit candidates to first 15 sentences for speed
|
122 |
+
candidates = sentences[:15]
|
123 |
+
|
124 |
+
for i, sentence in enumerate(candidates):
|
125 |
+
# Attempt to generate question for candidate sentence as answer
|
126 |
+
input_text = highlight_answer_in_context(context, sentence)
|
127 |
+
question = qg_pipeline(input_text, max_length=64)[0]['generated_text']
|
128 |
+
if question in used_questions or not question.endswith('?'):
|
129 |
+
continue
|
130 |
+
used_questions.add(question)
|
131 |
+
options, correct_letter = generate_mcq(sentence)
|
132 |
+
questions_structured.append({
|
133 |
+
"question": question,
|
134 |
+
"options": options,
|
135 |
+
"correct_letter": correct_letter,
|
136 |
+
"correct_answer": sentence,
|
137 |
+
"explanation": f"Answer explanation: {sentence}"
|
138 |
+
})
|
139 |
+
if len(questions_structured) >= num_questions:
|
140 |
+
break
|
141 |
+
|
142 |
+
if not questions_structured:
|
143 |
+
# fallback question if no generation
|
144 |
+
question = "What is the main topic discussed in the content?"
|
145 |
+
options = ["Option A", "Option B", "Option C", "Option D"]
|
146 |
+
questions_structured.append({
|
147 |
+
"question": question,
|
148 |
+
"options": options,
|
149 |
+
"correct_letter": "A",
|
150 |
+
"correct_answer": "Option A",
|
151 |
+
"explanation": "Fallback explanation."
|
152 |
+
})
|
153 |
+
|
154 |
+
return questions_structured
|
155 |
+
|
156 |
+
def generate_questions_subjective(context, num_questions):
|
157 |
+
'''
|
158 |
+
Generate subjective questions based on context, use summarization for answers
|
159 |
+
'''
|
160 |
+
sentences = split_to_sentences(context)
|
161 |
+
questions_structured = []
|
162 |
+
used_questions = set()
|
163 |
+
|
164 |
+
candidates = sentences[:20]
|
165 |
+
|
166 |
+
for i, sentence in enumerate(candidates):
|
167 |
+
input_text = highlight_answer_in_context(context, sentence)
|
168 |
+
question = qg_pipeline(input_text, max_length=64)[0]['generated_text']
|
169 |
+
if question in used_questions or not question.endswith('?'):
|
170 |
+
continue
|
171 |
+
used_questions.add(question)
|
172 |
+
|
173 |
+
# Brief answer by summarizing sentence or context snippet
|
174 |
+
answer = sentence
|
175 |
+
questions_structured.append({
|
176 |
+
"question": question,
|
177 |
+
"answer": answer
|
178 |
+
})
|
179 |
+
if len(questions_structured) >= num_questions:
|
180 |
+
break
|
181 |
+
if not questions_structured:
|
182 |
+
questions_structured.append({
|
183 |
+
"question": "Describe the main topic discussed in the content.",
|
184 |
+
"answer": "The main topic is an overview of the content provided."
|
185 |
+
})
|
186 |
+
|
187 |
+
return questions_structured
|
188 |
+
|
189 |
+
def format_mcq_output(questions):
|
190 |
+
output = ""
|
191 |
+
for idx, q in enumerate(questions, 1):
|
192 |
+
output += f"- Q{idx}: {q['question']}\n"
|
193 |
+
ops = ['A', 'B', 'C', 'D']
|
194 |
+
for opt_idx, option in enumerate(q['options']):
|
195 |
+
output += f" - {ops[opt_idx]}. {option}\n"
|
196 |
+
output += f"- Correct Answer: {q['correct_letter']}\n"
|
197 |
+
output += f"- Explanation: {q['explanation']}\n\n"
|
198 |
+
return output.strip()
|
199 |
+
|
200 |
+
def format_subjective_output(questions):
|
201 |
+
output = ""
|
202 |
+
for idx, q in enumerate(questions, 1):
|
203 |
+
output += f"- Q{idx}: {q['question']}\n"
|
204 |
+
output += f"- Suggested Answer: {q['answer']}\n\n"
|
205 |
+
return output.strip()
|
206 |
+
|
207 |
+
def main_process(file, question_type, num_questions):
|
208 |
+
if not file:
|
209 |
+
return "Please upload a file."
|
210 |
+
|
211 |
+
file_bytes = file.read()
|
212 |
+
fname = file.name.lower()
|
213 |
+
|
214 |
+
extracted_text = ""
|
215 |
+
|
216 |
+
if fname.endswith(".pdf"):
|
217 |
+
extracted_text = extract_text_from_pdf(file_bytes)
|
218 |
+
elif fname.endswith((".png", ".jpg", ".jpeg", ".bmp", ".tiff")):
|
219 |
+
extracted_text = extract_text_from_image(file_bytes)
|
220 |
+
elif fname.endswith(".txt"):
|
221 |
+
extracted_text = extract_text_from_txt(file_bytes)
|
222 |
+
else:
|
223 |
+
return "Unsupported file type. Please upload PDF, Image, or TXT."
|
224 |
+
|
225 |
+
extracted_text = clean_text(extracted_text)
|
226 |
+
|
227 |
+
if len(extracted_text) < 30:
|
228 |
+
return "Extracted text is too short or empty. Please check your input file."
|
229 |
+
|
230 |
+
if question_type == "MCQ":
|
231 |
+
questions = generate_questions_mcq(extracted_text, num_questions)
|
232 |
+
output = format_mcq_output(questions)
|
233 |
+
else:
|
234 |
+
questions = generate_questions_subjective(extracted_text, num_questions)
|
235 |
+
output = format_subjective_output(questions)
|
236 |
+
|
237 |
+
return output
|
238 |
+
|
239 |
+
with gr.Blocks(css="""
|
240 |
+
#header {
|
241 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
242 |
+
font-weight: 700;
|
243 |
+
font-size: 28px;
|
244 |
+
text-align: center;
|
245 |
+
margin-bottom: 20px;
|
246 |
+
color: #333;
|
247 |
+
}
|
248 |
+
#footer {
|
249 |
+
font-size: 12px;
|
250 |
+
color: #666;
|
251 |
+
margin-top: 30px;
|
252 |
+
text-align: center;
|
253 |
+
}
|
254 |
+
.output-area {
|
255 |
+
white-space: pre-wrap;
|
256 |
+
background-color: #f3f4f6;
|
257 |
+
padding: 15px;
|
258 |
+
border-radius: 8px;
|
259 |
+
font-family: monospace;
|
260 |
+
max-height: 450px;
|
261 |
+
overflow-y: auto;
|
262 |
+
}
|
263 |
+
.gr-button {
|
264 |
+
background-color: #4f46e5;
|
265 |
+
color: white;
|
266 |
+
font-weight: bold;
|
267 |
+
border-radius: 8px;
|
268 |
+
}
|
269 |
+
.gr-button:hover {
|
270 |
+
background-color: #4338ca;
|
271 |
+
}
|
272 |
+
""") as demo:
|
273 |
+
gr.Markdown("<div id='header'>π Study Content Question Generator</div>")
|
274 |
+
with gr.Row():
|
275 |
+
file_input = gr.File(label="Upload PDF, Image, or Text file", type="file")
|
276 |
+
with gr.Column():
|
277 |
+
question_type = gr.Radio(choices=["MCQ", "Subjective"], label="Question Type", value="MCQ")
|
278 |
+
num_questions = gr.Slider(1, 10, value=5, step=1, label="Number of Questions")
|
279 |
+
generate_btn = gr.Button("Generate Questions")
|
280 |
+
output = gr.Textbox(label="Generated Questions", lines=20, interactive=False, elem_classes="output-area")
|
281 |
+
|
282 |
+
generate_btn.click(fn=main_process, inputs=[file_input, question_type, num_questions], outputs=output)
|
283 |
+
|
284 |
+
gr.Markdown("<div id='footer'>Made with β€οΈ using Hugging Face Spaces and Transformers</div>")
|
285 |
+
|
286 |
+
if __name__ == "__main__":
|
287 |
+
demo.launch()
|