import gradio as gr from transformers import pipeline question_gen = pipeline("text2text-generation", model="valhalla/t5-base-qg-hl") def generate_questions(text, num_questions, question_type): # Insert highlight tags around the first sentence for question generation sentences = text.split('.') if len(sentences) > 1: highlighted = f" {sentences[0].strip()} ." + '.'.join(sentences[1:]) else: highlighted = f" {text.strip()} " prompt = f"generate questions: {highlighted}" results = question_gen(prompt, max_length=128, num_return_sequences=num_questions) return "\n\n".join([f"{i+1}. {r['generated_text']}" for i, r in enumerate(results)]) with gr.Blocks() as demo: gr.Markdown("# AI Mock Test Generator") input_text = gr.Textbox(lines=10, label="Paste text or content here") num_questions = gr.Slider(minimum=1, maximum=10, value=5, label="Number of Questions") question_type = gr.Radio(choices=["mcq", "subjective", "mixed"], value="mixed", label="Question Type") output = gr.Textbox(label="Generated Questions", lines=10) btn = gr.Button("Generate") btn.click(fn=generate_questions, inputs=[input_text, num_questions, question_type], outputs=output) demo.launch()