import gradio as gr from transformers import pipeline # Load the question generation model question_gen = pipeline("text2text-generation", model="iarfmoose/t5-base-question-generator") # Function to generate questions def generate_questions(text, num_questions, question_type): prompt = f"generate questions: {text}" results = question_gen(prompt, max_length=128, num_return_sequences=num_questions) return "\n\n".join([f"{i+1}. {r['generated_text']}" for i, r in enumerate(results)]) # Gradio app with gr.Blocks() as demo: gr.Markdown("# AI Mock Test Generator") input_text = gr.Textbox(lines=10, label="Paste your study material here") num_questions = gr.Slider(minimum=1, maximum=5, value=3, label="Number of Questions") question_type = gr.Radio(["subjective"], value="subjective", label="Question Type (only subjective supported now)") output = gr.Textbox(label="Generated Questions") btn = gr.Button("Generate") btn.click(fn=generate_questions, inputs=[input_text, num_questions, question_type], outputs=output) demo.launch()