Spaces:
Running
Running
import os | |
import pandas as pd | |
from fastapi import FastAPI, HTTPException, Body | |
from pydantic import BaseModel, Field | |
from typing import List, Dict, Any | |
from datasets import load_dataset, Dataset, DatasetDict | |
from huggingface_hub import HfApi, hf_hub_download | |
from datetime import datetime, timezone | |
import logging | |
import uvicorn # To run the app | |
import random # <-- Added import for random choice | |
tool_threshold = 3 | |
step_threshold = 5 | |
# --- Configuration --- | |
HF_DATASET_ID = "agents-course/unit4-students-scores" | |
# Ensure you have write access to this dataset repository on Hugging Face | |
# and are logged in via `huggingface-cli login` or have HF_TOKEN env var set. | |
# Prepare data structures for the API | |
questions_for_api: List[Dict[str, str]] = [] | |
ground_truth_answers: Dict[str, str] = {} | |
# --- Logging Setup --- | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
filtered_dataset=None | |
def load_questions(): | |
global filtered_dataset | |
global questions_for_api | |
global ground_truth_answers | |
tempo_filtered=[] | |
# Clear existing data to prevent duplication if called multiple times | |
questions_for_api.clear() | |
ground_truth_answers.clear() | |
logger.info("Starting to load and filter GAIA dataset...") | |
try: | |
dataset=load_dataset("gaia-benchmark/GAIA","2023_level1",trust_remote_code=True) | |
logger.info("GAIA dataset loaded.") | |
except Exception as e: | |
logger.error(f"Failed to load GAIA dataset: {e}", exc_info=True) | |
# Decide how to handle this: maybe raise the error or exit | |
raise RuntimeError("Could not load the primary GAIA dataset.") from e | |
for question in dataset['validation']: | |
metadata = question.get('Annotator Metadata') # Use .get() for safety | |
if metadata: # Check if 'Annotator Metadata' exists | |
num_tools_str = metadata.get('Number of tools') | |
num_steps_str = metadata.get('Number of steps') | |
# Check if both numbers exist before trying to convert | |
if num_tools_str is not None and num_steps_str is not None: | |
try: | |
# Convert values to integers for comparison | |
num_tools = int(num_tools_str) | |
num_steps = int(num_steps_str) | |
# Apply the filter conditions | |
if num_tools < tool_threshold and num_steps < step_threshold: | |
# logger.debug(f"MATCH FOUND (Task ID: {question.get('task_id', 'N/A')}) - Tools: {num_tools}, Steps: {num_steps}") | |
# logger.debug(question) # Print the matching question dictionary | |
# logger.debug("------------------------------------------------------------------") | |
tempo_filtered.append(question) # Add to the filtered list | |
# else: # Optional: Handle items that don't match the filter | |
# logger.debug(f"Skipping Task ID: {question.get('task_id', 'N/A')} - Tools: {num_tools}, Steps: {num_steps}") | |
except ValueError: | |
# Handle cases where 'Number of tools' or 'Number of steps' is not a valid integer | |
logger.warning(f"Skipping Task ID: {question.get('task_id', 'N/A')} - Could not convert tool/step count to integer: tools='{num_tools_str}', steps='{num_steps_str}'.") | |
# logger.debug("------------------------------------------------------------------") | |
else: | |
logger.warning(f"Skipping Task ID: {question.get('task_id', 'N/A')} - Missing 'Annotator Metadata'.") | |
# logger.debug("------------------------------------------------------------------") | |
filtered_dataset=tempo_filtered | |
logger.info(f"Found {len(filtered_dataset)} questions matching the criteria (tools < {tool_threshold}, steps < {step_threshold}).") | |
# print(filtered_dataset) # Keep this commented unless debugging | |
processed_count = 0 | |
for item in filtered_dataset: | |
task_id = item.get('task_id') | |
question_text = item.get('Question') | |
final_answer = item.get('Final answer') | |
# Validate required fields | |
if task_id and question_text and final_answer is not None: | |
# Create a copy of the item and remove fields we don't want | |
processed_item = item.copy() | |
processed_item.pop('Final answer', None) # Remove Final answer | |
processed_item.pop('Annotator Annotation', None) # Remove Annotator Annotation | |
# Store in questions_for_api | |
questions_for_api.append(processed_item) | |
# Still store the ground truth answers separately | |
ground_truth_answers[str(task_id)] = str(final_answer) | |
processed_count += 1 | |
else: | |
logger.warning(f"Skipping item due to missing fields (task_id, Question, or Final answer): {item}") | |
if not questions_for_api: | |
logger.error("CRITICAL: No valid questions loaded after filtering. API endpoints needing questions will fail.") | |
# Depending on requirements, you might want to exit or raise an error here | |
# raise RuntimeError("Failed to load mandatory question data after filtering.") | |
# --- Pydantic Models for Data Validation --- | |
class Question(BaseModel): | |
task_id: str | |
question: str | |
class AnswerItem(BaseModel): | |
task_id: str | |
submitted_answer: str = Field(..., description="The agent's answer for the task_id") | |
class Submission(BaseModel): | |
username: str = Field(..., description="Hugging Face username", min_length=1) | |
agent_code: str = Field(..., description="The Python class code for the agent", min_length=10) # Basic check | |
answers: List[AnswerItem] = Field(..., description="List of answers submitted by the agent") | |
class ScoreResponse(BaseModel): | |
username: str | |
score: float | |
correct_count: int | |
total_attempted: int | |
message: str | |
timestamp: str | |
class ErrorResponse(BaseModel): | |
detail: str | |
# --- FastAPI Application --- | |
app = FastAPI( | |
title="Agent Evaluation API", | |
description="API to fetch questions and submit agent answers for scoring.", | |
) | |
# --- Startup Event Handler --- | |
async def startup_event(): | |
""" | |
Loads the questions when the FastAPI application starts. | |
""" | |
logger.info("Application startup: Loading questions...") | |
try: | |
load_questions() # Call your loading function here | |
if not questions_for_api: | |
logger.error("CRITICAL: No questions were loaded during startup. The /questions and /random-question endpoints might fail.") | |
# Depending on requirements, you might want the app to fail startup | |
# raise RuntimeError("Failed to load mandatory question data.") | |
else: | |
logger.info(f"Successfully loaded {len(questions_for_api)} questions.") | |
except Exception as e: | |
logger.error(f"CRITICAL ERROR DURING STARTUP while loading questions: {e}", exc_info=True) | |
# Decide if the app should exit if loading fails | |
# import sys | |
# sys.exit(1) | |
# --- Helper Function to interact with HF Dataset --- | |
def update_huggingface_dataset(username: str, score: float): | |
"""Loads the dataset, updates the score if higher, and pushes back.""" | |
try: | |
# 1. Load the dataset | |
logger.info(f"Loading dataset '{HF_DATASET_ID}'...") | |
ds_dict = None | |
try: | |
# Use hf_hub_download to check if the parquet file exists, avoiding full dataset load error if empty | |
# This assumes the dataset uses the default 'train' split and parquet format. Adjust if needed. | |
hf_hub_download(repo_id=HF_DATASET_ID, filename="data/train-00000-of-00001.parquet", repo_type="dataset") | |
ds_dict = load_dataset(HF_DATASET_ID) | |
logger.info("Dataset loaded successfully.") | |
if "train" not in ds_dict: | |
logger.warning(f"Dataset '{HF_DATASET_ID}' does not contain a 'train' split. Creating one.") | |
df = pd.DataFrame({'username': pd.Series(dtype='str'), | |
'score': pd.Series(dtype='float'), | |
'timestamp': pd.Series(dtype='str')}) | |
else: | |
# Convert the 'train' split to a pandas DataFrame for easier manipulation | |
df = ds_dict['train'].to_pandas() | |
except Exception as load_error: # Catch broad exception for file not found or other loading issues | |
logger.warning(f"Could not load dataset '{HF_DATASET_ID}' or it might be empty/new ({load_error}). Creating structure.") | |
# Create an empty DataFrame with the correct schema | |
df = pd.DataFrame({'username': pd.Series(dtype='str'), | |
'score': pd.Series(dtype='float'), | |
'timestamp': pd.Series(dtype='str')}) | |
# Ensure columns exist, add if they don't | |
for col, dtype in [('username', 'str'), ('score', 'float'), ('timestamp', 'str')]: | |
if col not in df.columns: | |
logger.warning(f"Column '{col}' not found in dataset. Adding it.") | |
df[col] = pd.Series(dtype=dtype) | |
# Convert score column to numeric, coercing errors | |
df['score'] = pd.to_numeric(df['score'], errors='coerce') | |
# Fill potential NaN values in score with 0.0 before comparison/aggregation | |
df['score'] = df['score'].fillna(0.0) | |
# 2. Find existing score for the user | |
existing_entries = df[df['username'] == username] | |
current_timestamp = datetime.now(timezone.utc).isoformat() | |
needs_update = False | |
if not existing_entries.empty: | |
# User exists, find their highest score | |
# Handle potential NaN scores from coercion or previous bad data (though fillna above should help) | |
max_existing_score = existing_entries['score'].max() | |
if score > max_existing_score: | |
logger.info(f"New score {score} is higher than existing max {max_existing_score} for {username}. Updating.") | |
# Remove old entries for this user | |
df = df[df['username'] != username] | |
# Add new entry | |
new_entry = pd.DataFrame([{'username': username, 'score': score, 'timestamp': current_timestamp}]) | |
df = pd.concat([df, new_entry], ignore_index=True) | |
needs_update = True | |
else: | |
logger.info(f"New score {score} is not higher than existing max {max_existing_score} for {username}. No update needed.") | |
else: | |
# User does not exist, add them | |
logger.info(f"User {username} not found. Adding new entry.") | |
new_entry = pd.DataFrame([{'username': username, 'score': score, 'timestamp': current_timestamp}]) | |
df = pd.concat([df, new_entry], ignore_index=True) | |
needs_update = True | |
# 3. Push updated data back to Hugging Face Hub if changes were made | |
if needs_update: | |
logger.info(f"Pushing updated dataset to '{HF_DATASET_ID}'...") | |
# Convert potentially modified DataFrame back to a Dataset object | |
# Ensure the schema matches if columns were added/modified. | |
# Use 'train' split convention. | |
# Make sure the dtypes are correct before creating the Dataset | |
df['username'] = df['username'].astype(str) | |
df['score'] = df['score'].astype(float) | |
df['timestamp'] = df['timestamp'].astype(str) | |
updated_ds = DatasetDict({'train': Dataset.from_pandas(df)}) | |
logger.info(f"Dataset to push: {updated_ds}") # Log the dataset structure | |
updated_ds.push_to_hub(HF_DATASET_ID) # Token should be picked up from env or login | |
logger.warning("Dataset push to hub is currently commented out. Uncomment the line above to enable leaderboard updates.") # REMINDER | |
logger.info("Dataset push simulated/attempted.") | |
return True | |
else: | |
return False # No update was pushed | |
except Exception as e: | |
logger.error(f"Error interacting with Hugging Face dataset '{HF_DATASET_ID}': {e}", exc_info=True) | |
# Re-raise the exception to be caught by the endpoint handler | |
raise HTTPException(status_code=500, detail=f"Failed to update Hugging Face dataset: {e}") | |
# --- API Endpoints --- | |
async def get_questions(): | |
""" | |
Provides the list of questions that agents should answer. | |
""" | |
# print(f"Returning {len(questions_for_api)} questions.") # Debug log | |
if not questions_for_api: | |
logger.error("GET /questions requested but no questions are loaded.") | |
raise HTTPException(status_code=404, detail="No questions available.") | |
return questions_for_api | |
# --- NEW ENDPOINT --- | |
async def get_random_question(): | |
""" | |
Provides a single, randomly selected question from the loaded list. | |
""" | |
if not questions_for_api: | |
logger.warning("GET /random-question requested but no questions are loaded.") | |
raise HTTPException(status_code=404, detail="No questions available to choose from.") | |
# Select and return a random question dictionary | |
random_question = random.choice(questions_for_api) | |
logger.info(f"Returning random question with task_id: {random_question['task_id']}") | |
return random_question | |
# --- END NEW ENDPOINT --- | |
async def submit_answers(submission: Submission = Body(...)): | |
""" | |
Receives agent submissions: | |
- Validates input. | |
- Checks presence of agent code (basic anti-cheat). | |
- Calculates score based on submitted answers vs ground truth. | |
- Updates the score on the Hugging Face dataset if it's a new high score for the user. | |
""" | |
logger.info(f"Received submission from username: {submission.username}") | |
# Basic check for agent code presence | |
if not submission.agent_code or len(submission.agent_code.strip()) < 10: | |
logger.warning(f"Submission rejected for {submission.username}: Agent code missing or too short.") | |
raise HTTPException(status_code=400, detail="Agent code is required and must be sufficiently long.") | |
if not submission.answers: | |
logger.warning(f"Submission rejected for {submission.username}: No answers provided.") | |
raise HTTPException(status_code=400, detail="No answers provided in the submission.") | |
correct_count = 0 | |
total_attempted_in_payload = len(submission.answers) | |
valid_attempted_count = 0 # Count attempts where task_id was valid | |
processed_ids = set() | |
for answer_item in submission.answers: | |
task_id = str(answer_item.task_id) # Ensure string comparison | |
submitted = str(answer_item.submitted_answer) # Ensure string comparison | |
# Prevent duplicate task_id submissions in the same request | |
if task_id in processed_ids: | |
logger.warning(f"Duplicate task_id '{task_id}' in submission from {submission.username}. Skipping.") | |
continue # Don't count this as an attempt for scoring | |
processed_ids.add(task_id) | |
# Check if task_id is valid (exists in our loaded ground truth) | |
if task_id not in ground_truth_answers: | |
logger.warning(f"Task ID '{task_id}' submitted by {submission.username} not found in ground truth list. Skipping this answer.") | |
# Don't count this as a valid attempt for score calculation | |
continue | |
# If we reach here, the task_id is valid | |
valid_attempted_count += 1 | |
ground_truth = ground_truth_answers[task_id] | |
# Compare answers (case-insensitive, strip whitespace) | |
if submitted.strip().lower() == ground_truth.strip().lower(): | |
correct_count += 1 | |
logger.debug(f"Correct answer for {task_id} from {submission.username}") | |
else: | |
logger.debug(f"Incorrect answer for {task_id} from {submission.username}. Submitted: '{submitted}', Expected: '{ground_truth}'") | |
# Calculate score based on valid attempts | |
if valid_attempted_count == 0: | |
score = 0.0 | |
message = f"Submission received, but no valid/matching task IDs were found in the {total_attempted_in_payload} answers provided." | |
logger.warning(f"No valid answers processed for {submission.username} out of {total_attempted_in_payload} submitted.") | |
else: | |
score = round((correct_count / len(ground_truth_answers)) * 100, 2) | |
message = f"Score calculated successfully: {correct_count}/{valid_attempted_count} correct answers for valid tasks." | |
if valid_attempted_count < total_attempted_in_payload: | |
message += f" ({total_attempted_in_payload - valid_attempted_count} submitted answers had invalid or duplicate task IDs)." | |
logger.info(f"Score for {submission.username}: {score}% ({correct_count}/{valid_attempted_count})") | |
# Update Hugging Face dataset | |
try: | |
updated = update_huggingface_dataset(submission.username, score) | |
if updated: | |
message += " High score updated on leaderboard." | |
logger.info(f"Leaderboard updated for {submission.username}.") | |
else: | |
message += " Score did not improve previous record, leaderboard not updated." | |
logger.info(f"Leaderboard not updated for {submission.username} as score was not higher.") | |
except HTTPException as http_exc: | |
# Propagate HTTPException from the helper function (e.g., 500 error) | |
raise http_exc | |
except Exception as e: | |
# Catch any other unexpected errors during HF update | |
logger.error(f"Unexpected error during dataset update for {submission.username}: {e}", exc_info=True) | |
raise HTTPException(status_code=500, detail="An unexpected error occurred while updating the leaderboard.") | |
return ScoreResponse( | |
username=submission.username, | |
score=score, | |
correct_count=correct_count, | |
# Return the count of *valid* attempts for clarity | |
total_attempted=valid_attempted_count, | |
message=message, | |
timestamp=datetime.now(timezone.utc).isoformat() | |
) | |
# --- Run the application --- | |
# This part is mainly for local development without Docker. | |
# Docker uses the CMD instruction in the Dockerfile. | |
if __name__ == "__main__": | |
logger.info("Starting FastAPI server for local development...") | |
# Explicitly call load_questions here for local run, | |
# as the @app.on_event("startup") might not trigger reliably | |
# depending on how uvicorn is invoked directly. | |
try: | |
load_questions() | |
if not questions_for_api: | |
logger.error("EXITING: Cannot start server without loaded questions.") | |
else: | |
# Read port from environment variable for consistency, default to 8000 for local if not set | |
local_port = int(os.getenv("PORT", "8000")) | |
logger.info(f"Running Uvicorn locally on http://127.0.0.1:{local_port}") | |
# Note: host='127.0.0.1' is usually fine for local runs outside docker | |
uvicorn.run(app, host="127.0.0.1", port=local_port, log_level="info") | |
except Exception as e: | |
logger.error(f"Failed to start server: {e}", exc_info=True) |