|
import time |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from gptq import * |
|
from modelutils import * |
|
from quant import * |
|
|
|
from transformers import AutoTokenizer |
|
|
|
DEV = torch.device('cuda:0') |
|
|
|
def get_llama(model): |
|
import torch |
|
def skip(*args, **kwargs): |
|
pass |
|
torch.nn.init.kaiming_uniform_ = skip |
|
torch.nn.init.uniform_ = skip |
|
torch.nn.init.normal_ = skip |
|
from transformers import LlamaForCausalLM |
|
model = LlamaForCausalLM.from_pretrained(model, torch_dtype='auto') |
|
model.seqlen = 2048 |
|
return model |
|
|
|
def load_quant(model, checkpoint, wbits, groupsize, device): |
|
from transformers import LlamaConfig, LlamaForCausalLM |
|
config = LlamaConfig.from_pretrained(model) |
|
def noop(*args, **kwargs): |
|
pass |
|
torch.nn.init.kaiming_uniform_ = noop |
|
torch.nn.init.uniform_ = noop |
|
torch.nn.init.normal_ = noop |
|
|
|
torch.set_default_dtype(torch.half) |
|
transformers.modeling_utils._init_weights = False |
|
torch.set_default_dtype(torch.half) |
|
model = LlamaForCausalLM(config) |
|
torch.set_default_dtype(torch.float) |
|
model = model.eval() |
|
layers = find_layers(model) |
|
for name in ['lm_head']: |
|
if name in layers: |
|
del layers[name] |
|
make_quant(model, layers, wbits, groupsize) |
|
|
|
print('Loading model ...') |
|
if checkpoint.endswith('.safetensors'): |
|
from safetensors.torch import load_file as safe_load |
|
if device == -1: |
|
device = "cpu" |
|
model.load_state_dict(safe_load(checkpoint, device)) |
|
else: |
|
model.load_state_dict(torch.load(checkpoint)) |
|
model.seqlen = 2048 |
|
print('Done.') |
|
|
|
return model |
|
|
|
if __name__ == '__main__': |
|
import argparse |
|
from datautils import * |
|
|
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
'model', type=str, |
|
help='llama model to load' |
|
) |
|
parser.add_argument( |
|
'--wbits', type=int, default=16, choices=[2, 3, 4, 8, 16], |
|
help='#bits to use for quantization; use 16 for evaluating base model.' |
|
) |
|
parser.add_argument( |
|
'--groupsize', type=int, default=-1, |
|
help='Groupsize to use for quantization; default uses full row.' |
|
) |
|
parser.add_argument( |
|
'--load', type=str, default='', |
|
help='Load quantized model.' |
|
) |
|
|
|
parser.add_argument( |
|
'--text', type=str, |
|
help='input text' |
|
) |
|
|
|
parser.add_argument( |
|
'--min_length', type=int, default=10, |
|
help='The minimum length of the sequence to be generated.' |
|
) |
|
|
|
parser.add_argument( |
|
'--max_length', type=int, default=50, |
|
help='The maximum length of the sequence to be generated.' |
|
) |
|
|
|
parser.add_argument( |
|
'--top_p', type=float , default=0.95, |
|
help='If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.' |
|
) |
|
|
|
parser.add_argument( |
|
'--temperature', type=float, default=0.8, |
|
help='The value used to module the next token probabilities.' |
|
) |
|
|
|
parser.add_argument( |
|
'--device', type=int, default=-1, |
|
help='The device used to load the model when using safetensors. Default device is "cpu" or specify, 0,1,2,3,... for GPU device.' |
|
) |
|
|
|
args = parser.parse_args() |
|
|
|
if type(args.load) is not str: |
|
args.load = args.load.as_posix() |
|
|
|
if args.load: |
|
model = load_quant(args.model, args.load, args.wbits, args.groupsize, args.device) |
|
else: |
|
model = get_llama(args.model) |
|
model.eval() |
|
|
|
model.to(DEV) |
|
tokenizer = AutoTokenizer.from_pretrained(args.model) |
|
input_ids = tokenizer.encode(args.text, return_tensors="pt").to(DEV) |
|
|
|
with torch.no_grad(): |
|
generated_ids = model.generate( |
|
input_ids, |
|
do_sample=True, |
|
min_length=args.min_length, |
|
max_length=args.max_length, |
|
top_p=args.top_p, |
|
temperature=args.temperature, |
|
) |
|
print(tokenizer.decode([el.item() for el in generated_ids[0]])) |
|
|