mmcw23-p's picture
Upload 130 files
54d0f08
raw
history blame contribute delete
16.4 kB
import time
import torch
import torch.nn as nn
from gptq import *
from modelutils import *
from quant import *
def get_llama(model):
import torch
def skip(*args, **kwargs):
pass
torch.nn.init.kaiming_uniform_ = skip
torch.nn.init.uniform_ = skip
torch.nn.init.normal_ = skip
from transformers import LlamaForCausalLM
model = LlamaForCausalLM.from_pretrained(model, torch_dtype='auto')
model.seqlen = 2048
return model
@torch.no_grad()
def llama_sequential(model, dataloader, dev):
print('Starting ...')
use_cache = model.config.use_cache
model.config.use_cache = False
layers = model.model.layers
model.model.embed_tokens = model.model.embed_tokens.to(dev)
model.model.norm = model.model.norm.to(dev)
layers[0] = layers[0].to(dev)
dtype = next(iter(model.parameters())).dtype
inps = torch.zeros(
(args.nsamples, model.seqlen, model.config.hidden_size), dtype=dtype, device=dev
)
cache = {'i': 0, 'attention_mask': None}
class Catcher(nn.Module):
def __init__(self, module):
super().__init__()
self.module = module
def forward(self, inp, **kwargs):
inps[cache['i']] = inp
cache['i'] += 1
cache['attention_mask'] = kwargs['attention_mask']
cache['position_ids'] = kwargs['position_ids']
raise ValueError
layers[0] = Catcher(layers[0])
for batch in dataloader:
try:
model(batch[0].to(dev))
except ValueError:
pass
layers[0] = layers[0].module
layers[0] = layers[0].cpu()
model.model.embed_tokens = model.model.embed_tokens.cpu()
model.model.norm = model.model.norm.cpu()
torch.cuda.empty_cache()
outs = torch.zeros_like(inps)
attention_mask = cache['attention_mask']
position_ids = cache['position_ids']
print('Ready.')
quantizers = {}
for i in range(len(layers)):
layer = layers[i].to(dev)
full = find_layers(layer)
if args.true_sequential:
sequential = [
['self_attn.k_proj', 'self_attn.v_proj', 'self_attn.q_proj'],
['self_attn.o_proj'],
['mlp.up_proj', 'mlp.gate_proj'],
['mlp.down_proj']
]
else:
sequential = [list(full.keys())]
for names in sequential:
subset = {n: full[n] for n in names}
gptq = {}
for name in subset:
gptq[name] = GPTQ(subset[name])
gptq[name].quantizer = Quantizer()
gptq[name].quantizer.configure(
args.wbits, perchannel=True, sym=args.sym, mse=False
)
def add_batch(name):
def tmp(_, inp, out):
gptq[name].add_batch(inp[0].data, out.data)
return tmp
handles = []
for name in subset:
handles.append(subset[name].register_forward_hook(add_batch(name)))
for j in range(args.nsamples):
outs[j] = layer(inps[j].unsqueeze(0), attention_mask=attention_mask, position_ids = position_ids)[0]
for h in handles:
h.remove()
for name in subset:
print(f'Quantizing {name} in layer {i+1}/{len(layers)}...')
scale,zero,g_idx = gptq[name].fasterquant(percdamp=args.percdamp, groupsize=args.groupsize, actorder=args.act_order)
quantizers['model.layers.%d.%s' % (i, name)] = (gptq[name].quantizer.cpu(),scale.cpu(),zero.cpu(),g_idx.cpu())
gptq[name].free()
for j in range(args.nsamples):
outs[j] = layer(inps[j].unsqueeze(0), attention_mask=attention_mask, position_ids = position_ids)[0]
layers[i] = layer.cpu()
del layer
del gptq
torch.cuda.empty_cache()
inps, outs = outs, inps
model.config.use_cache = use_cache
return quantizers
@torch.no_grad()
def llama_eval(model, testenc, dev):
print('Evaluating ...')
testenc = testenc.input_ids
nsamples = testenc.numel() // model.seqlen
use_cache = model.config.use_cache
model.config.use_cache = False
layers = model.model.layers
model.model.embed_tokens = model.model.embed_tokens.to(dev)
layers[0] = layers[0].to(dev)
dtype = next(iter(model.parameters())).dtype
inps = torch.zeros(
(nsamples, model.seqlen, model.config.hidden_size), dtype=dtype, device=dev
)
cache = {'i': 0, 'attention_mask': None}
class Catcher(nn.Module):
def __init__(self, module):
super().__init__()
self.module = module
def forward(self, inp, **kwargs):
inps[cache['i']] = inp
cache['i'] += 1
cache['attention_mask'] = kwargs['attention_mask']
cache['position_ids'] = kwargs['position_ids']
raise ValueError
layers[0] = Catcher(layers[0])
for i in range(nsamples):
batch = testenc[:, (i * model.seqlen):((i + 1) * model.seqlen)].to(dev)
try:
model(batch)
except ValueError:
pass
layers[0] = layers[0].module
layers[0] = layers[0].cpu()
model.model.embed_tokens = model.model.embed_tokens.cpu()
torch.cuda.empty_cache()
outs = torch.zeros_like(inps)
attention_mask = cache['attention_mask']
position_ids = cache['position_ids']
for i in range(len(layers)):
print(i)
layer = layers[i].to(dev)
if args.nearest:
subset = find_layers(layer)
for name in subset:
quantizer = Quantizer()
quantizer.configure(
args.wbits, perchannel=True, sym=args.sym, mse=False
)
W = subset[name].weight.data
quantizer.find_params(W, weight=True)
subset[name].weight.data = quantize(
W, quantizer.scale, quantizer.zero, quantizer.maxq
).to(next(iter(layer.parameters())).dtype)
for j in range(nsamples):
outs[j] = layer(inps[j].unsqueeze(0), attention_mask=attention_mask, position_ids = position_ids)[0]
layers[i] = layer.cpu()
del layer
torch.cuda.empty_cache()
inps, outs = outs, inps
if model.model.norm is not None:
model.model.norm = model.model.norm.to(dev)
model.lm_head = model.lm_head.to(dev)
testenc = testenc.to(dev)
nlls = []
for i in range(nsamples):
hidden_states = inps[i].unsqueeze(0)
if model.model.norm is not None:
hidden_states = model.model.norm(hidden_states)
lm_logits = model.lm_head(hidden_states)
shift_logits = lm_logits[:, :-1, :].contiguous()
shift_labels = testenc[
:, (i * model.seqlen):((i + 1) * model.seqlen)
][:, 1:]
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
neg_log_likelihood = loss.float() * model.seqlen
nlls.append(neg_log_likelihood)
ppl = torch.exp(torch.stack(nlls).sum() / (nsamples * model.seqlen))
print(ppl.item())
model.config.use_cache = use_cache
# TODO: perform packing on GPU
def llama_pack(model, quantizers, wbits, groupsize):
layers = find_layers(model)
layers = {n: layers[n] for n in quantizers}
make_quant(model, quantizers, wbits, groupsize)
qlayers = find_layers(model, [QuantLinear])
print('Packing ...')
for name in qlayers:
print(name)
quantizers[name],scale,zero,g_idx = quantizers[name]
qlayers[name].pack(layers[name], scale, zero, g_idx)
print('Done.')
return model
def load_quant(model, checkpoint, wbits, groupsize = -1, warmup_autotune = True):
from transformers import LlamaConfig, LlamaForCausalLM
config = LlamaConfig.from_pretrained(model)
def noop(*args, **kwargs):
pass
torch.nn.init.kaiming_uniform_ = noop
torch.nn.init.uniform_ = noop
torch.nn.init.normal_ = noop
torch.set_default_dtype(torch.half)
transformers.modeling_utils._init_weights = False
torch.set_default_dtype(torch.half)
model = LlamaForCausalLM(config)
torch.set_default_dtype(torch.float)
model = model.eval()
layers = find_layers(model)
for name in ['lm_head']:
if name in layers:
del layers[name]
make_quant(model, layers, wbits, groupsize)
del layers
print('Loading model ...')
if checkpoint.endswith('.safetensors'):
from safetensors.torch import load_file as safe_load
model.load_state_dict(safe_load(checkpoint), strict = False)
else:
model.load_state_dict(torch.load(checkpoint), strict = False)
if warmup_autotune:
autotune_warmup(model)
model.seqlen = 2048
print('Done.')
return model
def llama_multigpu(model, gpus):
model.model.embed_tokens = model.model.embed_tokens.to(gpus[0])
if hasattr(model.model, 'norm') and model.model.norm:
model.model.norm = model.model.norm.to(gpus[-1])
import copy
model.lm_head = copy.deepcopy(model.lm_head).to(gpus[-1])
cache = {'mask': None}
class MoveModule(nn.Module):
def __init__(self, module):
super().__init__()
self.module = module
self.dev = next(iter(self.module.parameters())).device
def forward(self, *inp, **kwargs):
inp = list(inp)
if inp[0].device != self.dev:
inp[0] = inp[0].to(self.dev)
if cache['mask'] is None or cache['mask'].device != self.dev:
cache['mask'] = kwargs['attention_mask'].to(self.dev)
kwargs['attention_mask'] = cache['mask']
tmp = self.module(*inp, **kwargs)
return tmp
layers = model.model.layers
pergpu = math.ceil(len(layers) / len(gpus))
for i in range(len(layers)):
layers[i] = MoveModule(layers[i].to(gpus[i // pergpu]))
model.gpus = gpus
def benchmark(model, input_ids, check=False):
input_ids = input_ids.to(model.gpus[0] if hasattr(model, 'gpus') else DEV)
torch.cuda.synchronize()
cache = {'past': None}
def clear_past(i):
def tmp(layer, inp, out):
if cache['past']:
cache['past'][i] = None
return tmp
for i, layer in enumerate(model.model.layers):
layer.register_forward_hook(clear_past(i))
print('Benchmarking ...')
if check:
loss = nn.CrossEntropyLoss()
tot = 0.
def sync():
if hasattr(model, 'gpus'):
for gpu in model.gpus:
torch.cuda.synchronize(gpu)
else:
torch.cuda.synchronize()
max_memory = 0
with torch.no_grad():
attention_mask = torch.ones((1, input_ids.numel()), device=DEV)
times = []
for i in range(input_ids.numel()):
tick = time.time()
out = model(
input_ids[:, i:i+1],
past_key_values=cache['past'],
attention_mask=attention_mask[:, :(i + 1)].reshape((1, -1))
)
sync()
times.append(time.time() - tick)
print(i, times[-1])
max_memory = max(max_memory,torch.cuda.memory_allocated() / 1024 /1024)
if check and i != input_ids.numel() - 1:
tot += loss(out.logits[0].to(DEV), input_ids[:, (i + 1)].to(DEV)).float()
cache['past'] = list(out.past_key_values)
del out
sync()
import numpy as np
print('Median:', np.median(times))
if check:
print('PPL:', torch.exp(tot / (input_ids.numel() - 1)).item())
print('max memory(MiB):',max_memory)
if __name__ == '__main__':
import argparse
from datautils import *
parser = argparse.ArgumentParser()
parser.add_argument(
'model', type=str,
help='llama model to load'
)
parser.add_argument(
'dataset', type=str, choices=['wikitext2', 'ptb', 'c4'],
help='Where to extract calibration data from.'
)
parser.add_argument(
'--seed',
type=int, default=0, help='Seed for sampling the calibration data.'
)
parser.add_argument(
'--nsamples', type=int, default=128,
help='Number of calibration data samples.'
)
parser.add_argument(
'--percdamp', type=float, default=.01,
help='Percent of the average Hessian diagonal to use for dampening.'
)
parser.add_argument(
'--nearest', action='store_true',
help='Whether to run the RTN baseline.'
)
parser.add_argument(
'--wbits', type=int, default=16, choices=[2, 3, 4, 8, 16],
help='#bits to use for quantization; use 16 for evaluating base model.'
)
parser.add_argument(
'--trits', action='store_true',
help='Whether to use trits for quantization.'
)
parser.add_argument(
'--groupsize', type=int, default=-1,
help='Groupsize to use for quantization; default uses full row.'
)
parser.add_argument(
'--eval', action='store_true',
help='evaluate quantized model.'
)
parser.add_argument(
'--save', type=str, default='',
help='Save quantized checkpoint under this name.'
)
parser.add_argument(
'--save_safetensors', type=str, default='',
help='Save quantized `.safetensors` checkpoint under this name.'
)
parser.add_argument(
'--load', type=str, default='',
help='Load quantized model.'
)
parser.add_argument(
'--benchmark', type=int, default=0,
help='Number of tokens to use for benchmarking.'
)
parser.add_argument(
'--check', action='store_true',
help='Whether to compute perplexity during benchmarking for verification.'
)
parser.add_argument(
'--sym', action='store_true',
help='Whether to perform symmetric quantization.'
)
parser.add_argument(
'--act-order', action='store_true',
help='Whether to apply the activation order GPTQ heuristic'
)
parser.add_argument(
'--true-sequential', action='store_true',
help='Whether to run in true sequential model.'
)
parser.add_argument(
'--new-eval', action='store_true',
help='Whether to use the new PTB and C4 eval'
)
args = parser.parse_args()
if type(args.load) is not str:
args.load = args.load.as_posix()
if args.load:
model = load_quant(args.model, args.load, args.wbits, args.groupsize)
else:
model = get_llama(args.model)
model.eval()
dataloader, testloader = get_loaders(
args.dataset, nsamples=args.nsamples, seed=args.seed, model=args.model, seqlen=model.seqlen
)
if not args.load and args.wbits < 16 and not args.nearest:
tick = time.time()
quantizers = llama_sequential(model, dataloader, DEV)
print(time.time() - tick)
if args.benchmark:
gpus = [torch.device('cuda:%d' % i) for i in range(torch.cuda.device_count())]
if len(gpus) > 1:
llama_multigpu(model, gpus)
else:
model = model.to(DEV)
if args.benchmark:
input_ids = next(iter(dataloader))[0][:, :args.benchmark]
benchmark(model, input_ids, check=args.check)
if args.eval:
datasets = ['wikitext2', 'ptb', 'c4']
if args.new_eval:
datasets = ['wikitext2', 'ptb-new', 'c4-new']
for dataset in datasets:
dataloader, testloader = get_loaders(
dataset, seed=args.seed, model=args.model, seqlen=model.seqlen
)
print(dataset)
llama_eval(model, testloader, DEV)
if args.save:
llama_pack(model, quantizers, args.wbits, args.groupsize)
torch.save(model.state_dict(), args.save)
if args.save_safetensors:
llama_pack(model, quantizers, args.wbits, args.groupsize)
from safetensors.torch import save_file as safe_save
safe_save(model.state_dict(), args.save_safetensors)