File size: 6,283 Bytes
54d0f08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import numpy as np
import torch


def set_seed(seed):
    np.random.seed(seed)
    torch.random.manual_seed(seed)


def get_wikitext2(nsamples, seed, seqlen, model):
    from datasets import load_dataset
    traindata = load_dataset('wikitext', 'wikitext-2-raw-v1', split='train')
    testdata = load_dataset('wikitext', 'wikitext-2-raw-v1', split='test')

    from transformers import AutoTokenizer 
    tokenizer = AutoTokenizer.from_pretrained(model, use_fast=False)
    trainenc = tokenizer("\n\n".join(traindata['text']), return_tensors='pt')
    testenc = tokenizer("\n\n".join(testdata['text']), return_tensors='pt')

    import random
    random.seed(seed)
    trainloader = []
    for _ in range(nsamples):
        i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
        j = i + seqlen
        inp = trainenc.input_ids[:, i:j]
        tar = inp.clone()
        tar[:, :-1] = -100
        trainloader.append((inp, tar))
    return trainloader, testenc

def get_ptb(nsamples, seed, seqlen, model):
    from datasets import load_dataset
    traindata = load_dataset('ptb_text_only', 'penn_treebank', split='train')
    valdata = load_dataset('ptb_text_only', 'penn_treebank', split='validation')

    from transformers import AutoTokenizer 
    tokenizer = AutoTokenizer.from_pretrained(model, use_fast=False)
    trainenc = tokenizer("\n\n".join(traindata['sentence']), return_tensors='pt')
    testenc = tokenizer("\n\n".join(valdata['sentence']), return_tensors='pt')

    import random
    random.seed(seed)
    trainloader = []
    for _ in range(nsamples):
        i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
        j = i + seqlen
        inp = trainenc.input_ids[:, i:j]
        tar = inp.clone()
        tar[:, :-1] = -100
        trainloader.append((inp, tar))
    return trainloader, testenc

def get_c4(nsamples, seed, seqlen, model):
    from datasets import load_dataset
    traindata = load_dataset(
        'allenai/c4', 'allenai--c4', data_files={'train': 'en/c4-train.00000-of-01024.json.gz'}, split='train', use_auth_token=False
    )
    valdata = load_dataset(
        'allenai/c4', 'allenai--c4', data_files={'validation': 'en/c4-validation.00000-of-00008.json.gz'}, split='validation', use_auth_token=False
    )

    from transformers import AutoTokenizer
    tokenizer = AutoTokenizer.from_pretrained(model, use_fast=False)

    import random
    random.seed(seed)
    trainloader = []
    for _ in range(nsamples):
        while True:
            i = random.randint(0, len(traindata) - 1)
            trainenc = tokenizer(traindata[i]['text'], return_tensors='pt')
            if trainenc.input_ids.shape[1] >= seqlen:
                break
        i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
        j = i + seqlen
        inp = trainenc.input_ids[:, i:j]
        tar = inp.clone()
        tar[:, :-1] = -100
        trainloader.append((inp, tar))

    import random
    random.seed(0)
    valenc = []
    for _ in range(256):
        while True:
            i = random.randint(0, len(valdata) - 1)
            tmp = tokenizer(valdata[i]['text'], return_tensors='pt')
            if tmp.input_ids.shape[1] >= seqlen:
                break
        i = random.randint(0, tmp.input_ids.shape[1] - seqlen - 1)
        j = i + seqlen
        valenc.append(tmp.input_ids[:, i:j])
    valenc = torch.hstack(valenc)
    class TokenizerWrapper:
        def __init__(self, input_ids):
            self.input_ids = input_ids
    valenc = TokenizerWrapper(valenc)

    return trainloader, valenc 



def get_ptb_new(nsamples, seed, seqlen, model):
    from datasets import load_dataset
    traindata = load_dataset('ptb_text_only', 'penn_treebank', split='train')
    testdata = load_dataset('ptb_text_only', 'penn_treebank', split='test')

    from transformers import AutoTokenizer
    tokenizer = AutoTokenizer.from_pretrained(model, use_fast=False)
    trainenc = tokenizer(" ".join(traindata['sentence']), return_tensors='pt')
    testenc = tokenizer(" ".join(testdata['sentence']), return_tensors='pt')

    import random
    random.seed(seed)
    trainloader = []
    for _ in range(nsamples):
        i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
        j = i + seqlen
        inp = trainenc.input_ids[:, i:j]
        tar = inp.clone()
        tar[:, :-1] = -100
        trainloader.append((inp, tar))
    return trainloader, testenc

def get_c4_new(nsamples, seed, seqlen, model):
    from datasets import load_dataset
    traindata = load_dataset(
        'allenai/c4', 'allenai--c4', data_files={'train': 'en/c4-train.00000-of-01024.json.gz'}, split='train'
    )
    valdata = load_dataset(
        'allenai/c4', 'allenai--c4', data_files={'validation': 'en/c4-validation.00000-of-00008.json.gz'}, split='validation'
    )

    from transformers import AutoTokenizer
    tokenizer = AutoTokenizer.from_pretrained(model, use_fast=False)

    import random
    random.seed(seed)
    trainloader = []
    for _ in range(nsamples):
        while True:
            i = random.randint(0, len(traindata) - 1)
            trainenc = tokenizer(traindata[i]['text'], return_tensors='pt')
            if trainenc.input_ids.shape[1] >= seqlen:
                break
        i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
        j = i + seqlen
        inp = trainenc.input_ids[:, i:j]
        tar = inp.clone()
        tar[:, :-1] = -100
        trainloader.append((inp, tar))

    valenc = tokenizer(' '.join(valdata[:1100]['text']), return_tensors='pt')
    valenc = valenc.input_ids[:, :(256 * seqlen)]

    class TokenizerWrapper:
        def __init__(self, input_ids):
            self.input_ids = input_ids
    valenc = TokenizerWrapper(valenc)

    return trainloader, valenc
def get_loaders(
    name, nsamples=128, seed=0, seqlen=2048, model=''
):
    if 'wikitext2' in name:
        return get_wikitext2(nsamples, seed, seqlen, model)
    if 'ptb' in name:
        if 'new' in name:
            return get_ptb_new(nsamples, seed, seqlen, model)
        return get_ptb(nsamples, seed, seqlen, model)
    if 'c4' in name:
        if 'new' in name:
            return get_c4_new(nsamples, seed, seqlen, model)
        return get_c4(nsamples, seed, seqlen, model)