mmcgovern574's picture
Update app.py
df0e5d2 verified
import json
import subprocess
from threading import Thread
import os
import torch
import spaces
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer
# Update model configuration for Mistral-small-24B
MODEL_ID = "mistralai/Mistral-Small-24B-Instruct-2501"
CHAT_TEMPLATE = "mistral" # Mistral uses its own chat template
MODEL_NAME = MODEL_ID.split("/")[-1]
CONTEXT_LENGTH = 32768 # Mistral supports longer context
COLOR = "black"
EMOJI = "🌪️" # Mistral-themed emoji
DESCRIPTION = f"This is {MODEL_NAME} model, a powerful 24B parameter language model from Mistral AI."
def load_system_message():
try:
with open('system_message.txt', 'r', encoding='utf-8') as file:
return file.read().strip()
except FileNotFoundError:
print("Warning: system_message.txt not found. Using default message.")
return "You are a helpful assistant. First recognize the user request and then reply carefully with thinking."
except Exception as e:
print(f"Error loading system message: {e}")
return "You are a helpful assistant. First recognize the user request and then reply carefully with thinking."
SYSTEM_MESSAGE = load_system_message()
@spaces.GPU()
def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p):
# Format history using Mistral's chat template
messages = [{"role": "system", "content": SYSTEM_MESSAGE}]
for user, assistant in history:
messages.append({"role": "user", "content": user})
messages.append({"role": "assistant", "content": assistant})
messages.append({"role": "user", "content": message})
# Convert messages to Mistral format
prompt = tokenizer.apply_chat_template(messages, tokenize=False)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
enc = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
input_ids, attention_mask = enc.input_ids, enc.attention_mask
if input_ids.shape[1] > CONTEXT_LENGTH:
input_ids = input_ids[:, -CONTEXT_LENGTH:]
attention_mask = attention_mask[:, -CONTEXT_LENGTH:]
generate_kwargs = dict(
input_ids=input_ids.to(device),
attention_mask=attention_mask.to(device),
streamer=streamer,
do_sample=True,
temperature=temperature,
max_new_tokens=max_new_tokens,
top_k=top_k,
repetition_penalty=repetition_penalty,
top_p=top_p
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for new_token in streamer:
outputs.append(new_token)
yield "".join(outputs)
# Load model with optimized settings for Mistral-24B
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
use_double_quant=True, # Enable double quantization
bnb_4bit_quant_type="nf4" # Use normal float 4 for better precision
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
# Set the pad token to be the same as the end of sequence token
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
device_map="auto",
quantization_config=quantization_config,
torch_dtype=torch.bfloat16
)
# Create Gradio interface
gr.ChatInterface(
predict,
title=EMOJI + " " + MODEL_NAME,
description=DESCRIPTION,
examples=[
['What are the key differences between classical and quantum computing?'],
['Explain the concept of recursive neural networks in simple terms.'],
['How does transfer learning work in large language models?'],
['What are the ethical considerations in AI development?']
],
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False),
additional_inputs=[
gr.Textbox(SYSTEM_MESSAGE, label="System prompt", visible=False), # Hidden system prompt
gr.Slider(0, 1, 0.7, label="Temperature"), # Adjusted default for Mistral
gr.Slider(0, 32768, 12000, label="Max new tokens"), # Increased for longer context
gr.Slider(1, 100, 50, label="Top K sampling"),
gr.Slider(0, 2, 1.1, label="Repetition penalty"),
gr.Slider(0, 1, 0.95, label="Top P sampling"),
],
).queue().launch()