Spaces:
Running
Running
File size: 12,175 Bytes
b10121d c97bae1 b10121d c97bae1 b10121d c97bae1 b10121d c97bae1 b10121d c97bae1 b10121d c97bae1 b10121d c97bae1 b10121d c97bae1 b10121d c97bae1 b10121d c97bae1 b10121d c97bae1 b10121d c97bae1 b10121d c97bae1 b10121d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
from __future__ import annotations
import json
import inspect
import argparse
from pprint import pprint
from pathlib import Path
from contextlib import suppress
from dataclasses import dataclass, field, asdict
from typing import Any
import torch
import pynvml
import numpy as np
from PIL import Image
from transformers.trainer_utils import set_seed
from diffusers import ModelMixin, DiffusionPipeline # type: ignore
from diffusers.utils import load_image, export_to_gif # pyright: reportPrivateImportUsage=false
from zeus.monitor import ZeusMonitor
# Disable torch gradients globally
torch.set_grad_enabled(False)
@dataclass
class Results:
model: str
num_parameters: dict[str, int]
gpu_model: str
power_limit: int
batch_size: int
num_inference_steps: int
num_frames: int
num_prompts: int
total_runtime: float = 0.0
total_energy: float = 0.0
average_batch_latency: float = 0.0
average_images_per_second: float = 0.0
average_batch_energy: float = 0.0
average_power_consumption: float = 0.0
peak_memory: float = 0.0
results: list[Result] = field(default_factory=list, repr=False)
@dataclass
class ResultIntermediateBatched:
prompts: list[str]
images: list[Image.Image]
batch_latency: float = 0.0
batch_energy: float = 0.0
frames: np.ndarray | list[list[Image.Image]] = np.empty(0)
@dataclass
class Result:
batch_latency: float
sample_energy: float
prompt: str
video_path: str | None
def get_pipeline(model_id: str):
"""Instantiate a Diffusers pipeline from a modes's HuggingFace Hub ID."""
# Load args to give to `from_pretrained` from the model's kwargs.json file
kwargs = json.load(open(f"models/{model_id}/kwargs.json"))
with suppress(KeyError):
kwargs["torch_dtype"] = eval(kwargs["torch_dtype"])
# Add additional args
kwargs["safety_checker"] = None
kwargs["revision"] = open(f"models/{model_id}/revision.txt").read().strip()
pipeline = DiffusionPipeline.from_pretrained(model_id, **kwargs).to("cuda:0")
print("\nInstantiated pipeline via DiffusionPipeline:\n", pipeline)
return pipeline
def load_text_image_prompts(
path: str,
batch_size: int,
num_batches: int | None = None,
image_resize: tuple[int, int] | None = None,
) -> tuple[int, list[tuple[list[str], list[Image.Image]]]]:
"""Load the dataset to feed the model and return it as a list of batches of prompts.
Depending on the batch size, the final batch may not be full. The final batch
is dropped in that case. If `num_batches` is not None, only that many batches
is returned. If `num_batches` is None, all batches are returned.
Returns:
Total number of prompts and a list of batches of prompts.
"""
dataset = json.load(open(path))
assert len(dataset["caption"]) == len(dataset["video_id"])
dataset["caption"] *= 10
dataset["video_id"] *= 10
if num_batches is not None:
if len(dataset["caption"]) < num_batches * batch_size:
raise ValueError("Not enough data for the requested number of batches.")
dataset["caption"] = dataset["caption"][: num_batches * batch_size]
dataset["video_id"] = dataset["video_id"][: num_batches * batch_size]
image_path = Path(path).parent / "first_frame"
dataset["first_frame"] = [
load_image(str(image_path / f"{video_id}.jpg")) for video_id in dataset["video_id"]
]
if image_resize is not None:
dataset["first_frame"] = [image.resize(image_resize) for image in dataset["first_frame"]]
batched = [
(dataset["caption"][i : i + batch_size], dataset["first_frame"][i : i + batch_size])
for i in range(0, len(dataset["caption"]), batch_size)
]
if len(batched[-1]) < batch_size:
batched.pop()
return len(batched) * batch_size, batched
def count_parameters(pipeline) -> dict[str, int]:
"""Count the number of parameters in the given pipeline."""
num_params = {}
for name, attr in vars(pipeline).items():
if isinstance(attr, ModelMixin):
num_params[name] = attr.num_parameters(only_trainable=False, exclude_embeddings=True)
elif isinstance(attr, torch.nn.Module):
num_params[name] = sum(p.numel() for p in attr.parameters())
return num_params
def benchmark(args: argparse.Namespace) -> None:
if args.model.startswith("models/"):
args.model = args.model[len("models/") :]
if args.model.endswith("/"):
args.model = args.model[:-1]
set_seed(args.seed)
results_dir = Path(args.result_root) / args.model
results_dir.mkdir(parents=True, exist_ok=True)
benchmark_name = str(results_dir / f"bs{args.batch_size}+pl{args.power_limit}+steps{args.num_inference_steps}")
video_dir = results_dir / f"bs{args.batch_size}+pl{args.power_limit}+steps{args.num_inference_steps}+generated"
video_dir.mkdir(exist_ok=True)
arg_out_filename = f"{benchmark_name}+args.json"
with open(arg_out_filename, "w") as f:
f.write(json.dumps(vars(args), indent=2))
print(args)
print("Benchmark args written to", arg_out_filename)
zeus_monitor = ZeusMonitor()
pynvml.nvmlInit()
handle = pynvml.nvmlDeviceGetHandleByIndex(0)
gpu_model = pynvml.nvmlDeviceGetName(handle)
# pynvml.nvmlDeviceSetPersistenceMode(handle, pynvml.NVML_FEATURE_ENABLED)
# pynvml.nvmlDeviceSetPowerManagementLimit(handle, args.power_limit * 1000)
pynvml.nvmlShutdown()
num_prompts, batched_prompts = load_text_image_prompts(
args.dataset_path,
args.batch_size,
args.num_batches,
(args.width, args.height),
)
pipeline = get_pipeline(args.model)
# Warmup
print("Warming up with two batches...")
for i in range(2):
params: dict[str, Any] = dict(
image=batched_prompts[i][1],
num_frames=args.num_frames,
num_inference_steps=args.num_inference_steps,
)
if args.add_text_prompt:
params["prompt"] = batched_prompts[i][0]
_ = pipeline(**params)
rng = torch.manual_seed(args.seed)
# Some models require a text prompt alongside the image (e.g., I2VGen-XL)
# In that case, `prompts` will not be passed to the model.
intermediates: list[ResultIntermediateBatched] = [
ResultIntermediateBatched(prompts=text, images=image) for text, image in batched_prompts
]
# Different pipelines use different names for the FPS parameter
gen_signature= inspect.signature(pipeline.__call__)
fps_param_name_candidates = list(filter(lambda x: "fps" in x, gen_signature.parameters))
if not fps_param_name_candidates:
raise ValueError("No parameter with 'fps' in its name found in the pipeline's signature.")
if len(fps_param_name_candidates) > 1:
raise ValueError("Multiple parameters with 'fps' in their name found in the pipeline's signature.")
fps_param_name = fps_param_name_candidates[0]
torch.cuda.reset_peak_memory_stats(device="cuda:0")
zeus_monitor.begin_window("benchmark", sync_execution=False)
# Build common parameter dict for all batches
params: dict[str, Any] = dict(
num_frames=args.num_frames,
num_inference_steps=args.num_inference_steps,
generator=rng,
)
params[fps_param_name] = args.fps
if args.height is not None:
params["height"] = args.height
if args.width is not None:
params["width"] = args.width
for ind, intermediate in enumerate(intermediates):
print(f"Batch {ind + 1}/{len(intermediates)}")
params["image"] = intermediate.images
if args.add_text_prompt:
params["prompt"] = intermediate.prompts
zeus_monitor.begin_window("batch", sync_execution=False)
frames = pipeline(**params).frames
batch_measurements = zeus_monitor.end_window("batch", sync_execution=False)
intermediate.frames = frames
intermediate.batch_latency = batch_measurements.time
intermediate.batch_energy = batch_measurements.total_energy
measurements = zeus_monitor.end_window("benchmark", sync_execution=False)
peak_memory = torch.cuda.max_memory_allocated(device="cuda:0")
results: list[Result] = []
ind = 0
for intermediate in intermediates:
# Some pipelines just return a giant numpy array for all frames.
# In that case, scale frames to uint8 [0, 256] and convert to PIL.Image
if isinstance(intermediate.frames, np.ndarray):
frames = []
for video in intermediate.frames:
frames.append(
[Image.fromarray((frame * 255).astype(np.uint8)) for frame in video]
)
intermediate.frames = frames
for frames, prompt in zip(intermediate.frames, intermediate.prompts, strict=True):
if ind % args.save_every == 0:
video_path = str(video_dir / f"{prompt[:200]}.gif")
export_to_gif(frames, video_path, fps=args.fps)
else:
video_path = None
results.append(
Result(
batch_latency=intermediate.batch_latency,
sample_energy=intermediate.batch_energy / len(intermediate.prompts),
prompt=prompt,
video_path=video_path,
)
)
ind += 1
final_results = Results(
model=args.model,
num_parameters=count_parameters(pipeline),
gpu_model=gpu_model,
power_limit=args.power_limit,
batch_size=args.batch_size,
num_inference_steps=args.num_inference_steps,
num_frames=args.num_frames,
num_prompts=num_prompts,
total_runtime=measurements.time,
total_energy=measurements.total_energy,
average_batch_latency=measurements.time / len(batched_prompts),
average_images_per_second=num_prompts / measurements.time,
average_batch_energy=measurements.total_energy / len(batched_prompts),
average_power_consumption=measurements.total_energy / measurements.time,
peak_memory=peak_memory,
results=results,
)
with open(f"{benchmark_name}+results.json", "w") as f:
f.write(json.dumps(asdict(final_results), indent=2))
print("Benchmark results written to", f"{benchmark_name}+results.json")
print("Benchmark results:")
pprint(final_results)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, required=True, help="The model to benchmark.")
parser.add_argument("--dataset-path", type=str, required=True, help="Path to the dataset to use.")
parser.add_argument("--add-text-prompt", action="store_true", help="Input text prompt alongside image.")
parser.add_argument("--result-root", type=str, help="The root directory to save results to.")
parser.add_argument("--batch-size", type=int, default=1, help="The size of each batch of prompts.")
parser.add_argument("--power-limit", type=int, default=300, help="The power limit to set for the GPU in Watts.")
parser.add_argument("--num-inference-steps", type=int, default=50, help="The number of denoising steps.")
parser.add_argument("--num-frames", type=int, default=1, help="The number of frames to generate.")
parser.add_argument("--fps", type=int, default=16, help="Frames per second for micro-conditioning.")
parser.add_argument("--height", type=int, required=True, help="Height of the generated video.")
parser.add_argument("--width", type=int, required=True, help="Width of the generated video.")
parser.add_argument("--num-batches", type=int, default=None, help="The number of batches to use from the dataset.")
parser.add_argument("--save-every", type=int, default=10, help="Save generations to file every N prompts.")
parser.add_argument("--seed", type=int, default=0, help="The seed to use for the RNG.")
parser.add_argument("--huggingface-token", type=str, help="The HuggingFace token to use.")
args = parser.parse_args()
benchmark(args)
|