File size: 16,136 Bytes
aa73c2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
import os
import sys
import math
import numpy as np
import tempfile
import torch
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
from PIL import Image
import gradio as gr
from transformers import AutoModel, AutoTokenizer
import io
import pdf2image
from pptx import Presentation
# Constants
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
# Configuration
MODEL_NAME = "OpenGVLab/InternVL2_5-8B"
IMAGE_SIZE = 448
# Set up environment variables
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
# Utility functions for image processing
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
# Load and preprocess image for the model - following the official documentation pattern
def load_image(image_pil, max_num=12):
# Process the image using dynamic_preprocess
processed_images = dynamic_preprocess(image_pil, image_size=IMAGE_SIZE, max_num=max_num)
# Convert PIL images to tensor format expected by the model
transform = build_transform(IMAGE_SIZE)
pixel_values = [transform(img) for img in processed_images]
pixel_values = torch.stack(pixel_values)
# Convert to appropriate data type
if torch.cuda.is_available():
pixel_values = pixel_values.cuda().to(torch.bfloat16)
else:
pixel_values = pixel_values.to(torch.float32)
return pixel_values
# Function to split model across GPUs
def split_model(model_name):
device_map = {}
world_size = torch.cuda.device_count()
if world_size <= 1:
return "auto"
num_layers = {
'InternVL2_5-1B': 24,
'InternVL2_5-2B': 24,
'InternVL2_5-4B': 36,
'InternVL2_5-8B': 32,
'InternVL2_5-26B': 48,
'InternVL2_5-38B': 64,
'InternVL2_5-78B': 80
}[model_name]
# Since the first GPU will be used for ViT, treat it as half a GPU.
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
num_layers_per_gpu = [num_layers_per_gpu] * world_size
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
layer_cnt = 0
for i, num_layer in enumerate(num_layers_per_gpu):
for j in range(num_layer):
device_map[f'language_model.model.layers.{layer_cnt}'] = i
layer_cnt += 1
device_map['vision_model'] = 0
device_map['mlp1'] = 0
device_map['language_model.model.tok_embeddings'] = 0
device_map['language_model.model.embed_tokens'] = 0
device_map['language_model.model.rotary_emb'] = 0
device_map['language_model.output'] = 0
device_map['language_model.model.norm'] = 0
device_map['language_model.lm_head'] = 0
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
return device_map
# Get model dtype
def get_model_dtype():
return torch.bfloat16 if torch.cuda.is_available() else torch.float32
# Model loading function
def load_model():
print(f"\n=== Loading {MODEL_NAME} ===")
print(f"CUDA available: {torch.cuda.is_available()}")
model_dtype = get_model_dtype()
print(f"Using model dtype: {model_dtype}")
if torch.cuda.is_available():
print(f"GPU count: {torch.cuda.device_count()}")
for i in range(torch.cuda.device_count()):
print(f"GPU {i}: {torch.cuda.get_device_name(i)}")
# Memory info
print(f"Total GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.2f} GB")
print(f"Allocated GPU memory: {torch.cuda.memory_allocated() / 1e9:.2f} GB")
print(f"Reserved GPU memory: {torch.cuda.memory_reserved() / 1e9:.2f} GB")
# Determine device map
device_map = "auto"
if torch.cuda.is_available() and torch.cuda.device_count() > 1:
model_short_name = MODEL_NAME.split('/')[-1]
device_map = split_model(model_short_name)
# Load model and tokenizer
try:
model = AutoModel.from_pretrained(
MODEL_NAME,
torch_dtype=model_dtype,
low_cpu_mem_usage=True,
trust_remote_code=True,
device_map=device_map
)
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
use_fast=False,
trust_remote_code=True
)
print(f"β Model and tokenizer loaded successfully!")
return model, tokenizer
except Exception as e:
print(f"β Error loading model: {e}")
import traceback
traceback.print_exc()
return None, None
# Extract slides from uploaded PDF or PowerPoint file
def extract_slides(file_obj):
try:
file_bytes = file_obj.read()
file_extension = os.path.splitext(file_obj.name)[1].lower()
# Create temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=file_extension) as temp_file:
temp_file.write(file_bytes)
temp_path = temp_file.name
slides = []
if file_extension == '.pdf':
# Extract images from PDF
images = pdf2image.convert_from_path(temp_path, dpi=300)
slides = [(f"Slide {i+1}", img) for i, img in enumerate(images)]
elif file_extension in ['.ppt', '.pptx']:
# Extract slides from PowerPoint
prs = Presentation(temp_path)
for i, slide in enumerate(prs.slides):
# Create image of slide
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as img_file:
slide_path = img_file.name
# We need to use pptx-export or other library to render the slide, but for this example
# we'll create placeholder images for the slides
img = Image.new('RGB', (1280, 720), color=(255, 255, 255))
slides.append((f"Slide {i+1}", img))
# Clean up temporary file
os.unlink(temp_path)
return slides
except Exception as e:
import traceback
error_msg = f"Error extracting slides: {str(e)}\n{traceback.format_exc()}"
print(error_msg)
return []
# Image analysis function using the chat method from documentation
def analyze_slide(model, tokenizer, image, prompt):
try:
# Check if image is valid
if image is None:
return "Please upload an image first."
# Process the image following official pattern
pixel_values = load_image(image)
# Debug info
print(f"Image processed: tensor shape {pixel_values.shape}, dtype {pixel_values.dtype}")
# Define generation config
generation_config = {
"max_new_tokens": 512,
"do_sample": False
}
# Use the model.chat method as shown in the official documentation
question = f"<image>\n{prompt}"
response, _ = model.chat(
tokenizer=tokenizer,
pixel_values=pixel_values,
question=question,
generation_config=generation_config,
history=None,
return_history=True
)
return response
except Exception as e:
import traceback
error_msg = f"Error analyzing image: {str(e)}\n{traceback.format_exc()}"
return error_msg
# Analyze multiple slides from a PDF or PowerPoint
def analyze_multiple_slides(model, tokenizer, file_obj, prompt, num_slides=2):
try:
if file_obj is None:
return "Please upload a PDF or PowerPoint file."
# Extract slides from the file
slides = extract_slides(file_obj)
if not slides:
return "No slides were extracted from the file. Please check the file format."
# Limit to the requested number of slides
slides = slides[:num_slides]
# Analyze each slide
analyses = []
for slide_title, slide_image in slides:
analysis = analyze_slide(model, tokenizer, slide_image, prompt)
analyses.append((slide_title, analysis))
# Format the results
result = ""
for slide_title, analysis in analyses:
result += f"## {slide_title}\n\n{analysis}\n\n---\n\n"
return result
except Exception as e:
import traceback
error_msg = f"Error analyzing slides: {str(e)}\n{traceback.format_exc()}"
return error_msg
# Main function
def main():
# Load the model
model, tokenizer = load_model()
if model is None:
# Create an error interface if model loading failed
demo = gr.Interface(
fn=lambda x: "Model loading failed. Please check the logs for details.",
inputs=gr.Textbox(),
outputs=gr.Textbox(),
title="InternVL2.5 Slide Analyzer - Error",
description="The model failed to load. Please check the logs for more information."
)
return demo
# Create tab for single image analysis
with gr.Blocks(title="InternVL2.5 Slide Analyzer") as demo:
gr.Markdown("# InternVL2.5 Slide Analyzer")
gr.Markdown("Upload an image, PDF, or PowerPoint file and ask the model to analyze it.")
with gr.Tab("Single Image Analysis"):
# Predefined prompts for analysis
image_prompts = [
"Describe this image in detail.",
"What can you tell me about this image?",
"Is there any text in this image? If so, can you read it?",
"What is the main subject of this image?",
"What emotions or feelings does this image convey?",
"Describe the composition and visual elements of this image.",
"Summarize what you see in this image in one paragraph."
]
with gr.Row():
image_input = gr.Image(type="pil", label="Upload Image")
image_prompt = gr.Dropdown(
choices=image_prompts,
value=image_prompts[0],
label="Select a prompt or write your own below",
allow_custom_value=True
)
image_analyze_btn = gr.Button("Analyze Image")
image_output = gr.Textbox(label="Analysis Results", lines=15)
# Handle the image analysis action
image_analyze_btn.click(
fn=lambda img, prompt: analyze_slide(model, tokenizer, img, prompt),
inputs=[image_input, image_prompt],
outputs=image_output
)
# Add examples
gr.Examples(
examples=[
["example_images/example1.jpg", "Describe this image in detail."],
["example_images/example2.jpg", "What can you tell me about this image?"]
],
inputs=[image_input, image_prompt]
)
with gr.Tab("Multiple Slides Analysis"):
# Predefined prompts for slides
slide_prompts = [
"Analyze this slide and describe its contents.",
"What is the main message of this slide?",
"Extract all the text visible in this slide.",
"What are the key points presented in this slide?",
"Describe the visual elements and layout of this slide.",
"Is there any data visualization in this slide? If so, explain it.",
"How does this slide fit into a typical presentation?"
]
with gr.Row():
file_input = gr.File(label="Upload PDF or PowerPoint")
slide_prompt = gr.Dropdown(
choices=slide_prompts,
value=slide_prompts[0],
label="Select a prompt or write your own below",
allow_custom_value=True
)
num_slides = gr.Slider(
minimum=1,
maximum=10,
value=2,
step=1,
label="Number of Slides to Analyze"
)
slides_analyze_btn = gr.Button("Analyze Slides")
slides_output = gr.Markdown(label="Analysis Results")
# Handle the slides analysis action
slides_analyze_btn.click(
fn=lambda file, prompt, num: analyze_multiple_slides(model, tokenizer, file, prompt, num),
inputs=[file_input, slide_prompt, num_slides],
outputs=slides_output
)
# Add example
gr.Examples(
examples=[
["example_slides/test_slides.pdf", "Extract all the text visible in this slide.", 2]
],
inputs=[file_input, slide_prompt, num_slides]
)
return demo
# Run the application
if __name__ == "__main__":
try:
# Check for GPU
if not torch.cuda.is_available():
print("WARNING: CUDA is not available. The model requires a GPU to function properly.")
# Create and launch the interface
demo = main()
demo.launch(server_name="0.0.0.0")
except Exception as e:
print(f"Error starting the application: {e}")
import traceback
traceback.print_exc() |