|
import os |
|
import sys |
|
import torch |
|
import tempfile |
|
from PIL import Image |
|
import gradio as gr |
|
import pdf2image |
|
from transformers import AutoModel, AutoTokenizer |
|
import torchvision.transforms as transforms |
|
|
|
|
|
MODEL_NAME = "OpenGVLab/InternVL2_5-8B" |
|
IMAGE_SIZE = 448 |
|
|
|
|
|
def load_model(): |
|
print(f"\n=== Loading {MODEL_NAME} ===") |
|
print(f"CUDA available: {torch.cuda.is_available()}") |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
print(f"Using device: {device}") |
|
|
|
|
|
try: |
|
model = AutoModel.from_pretrained( |
|
MODEL_NAME, |
|
trust_remote_code=True, |
|
device_map="auto" if torch.cuda.is_available() else None |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
MODEL_NAME, |
|
use_fast=False, |
|
trust_remote_code=True |
|
) |
|
|
|
print(f"β Model and tokenizer loaded successfully!") |
|
return model, tokenizer |
|
except Exception as e: |
|
print(f"β Error loading model: {e}") |
|
import traceback |
|
traceback.print_exc() |
|
return None, None |
|
|
|
|
|
def extract_slides_from_pdf(file_obj): |
|
try: |
|
file_bytes = file_obj.read() |
|
file_extension = os.path.splitext(file_obj.name)[1].lower() |
|
|
|
|
|
if file_extension != '.pdf': |
|
return [] |
|
|
|
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix=file_extension) as temp_file: |
|
temp_file.write(file_bytes) |
|
temp_path = temp_file.name |
|
|
|
|
|
slides = [] |
|
try: |
|
images = pdf2image.convert_from_path(temp_path, dpi=300) |
|
slides = [(f"Slide {i+1}", img) for i, img in enumerate(images)] |
|
except Exception as e: |
|
print(f"Error converting PDF: {e}") |
|
|
|
|
|
os.unlink(temp_path) |
|
|
|
return slides |
|
|
|
except Exception as e: |
|
import traceback |
|
error_msg = f"Error extracting slides: {str(e)}\n{traceback.format_exc()}" |
|
print(error_msg) |
|
return [] |
|
|
|
|
|
def preprocess_image(image): |
|
|
|
img = image.resize((IMAGE_SIZE, IMAGE_SIZE)) |
|
|
|
|
|
transform = transforms.Compose([ |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) |
|
]) |
|
|
|
|
|
img_tensor = transform(img).unsqueeze(0) |
|
|
|
|
|
if torch.cuda.is_available(): |
|
img_tensor = img_tensor.cuda() |
|
|
|
return img_tensor |
|
|
|
|
|
def analyze_image(model, tokenizer, image, prompt): |
|
try: |
|
|
|
if image is None: |
|
return "Please upload an image first." |
|
|
|
|
|
processed_image = preprocess_image(image) |
|
|
|
|
|
question = f"<image>\n{prompt}" |
|
|
|
|
|
response, _ = model.chat( |
|
tokenizer=tokenizer, |
|
pixel_values=processed_image, |
|
question=question, |
|
history=None, |
|
return_history=True |
|
) |
|
|
|
return response |
|
except Exception as e: |
|
import traceback |
|
error_msg = f"Error analyzing image: {str(e)}\n{traceback.format_exc()}" |
|
return error_msg |
|
|
|
|
|
def analyze_pdf_slides(model, tokenizer, file_obj, prompt, num_slides=2): |
|
try: |
|
if file_obj is None: |
|
return "Please upload a PDF file." |
|
|
|
|
|
slides = extract_slides_from_pdf(file_obj) |
|
|
|
if not slides: |
|
return "No slides were extracted from the file. Please check that it's a valid PDF." |
|
|
|
|
|
slides = slides[:num_slides] |
|
|
|
|
|
analyses = [] |
|
for slide_title, slide_image in slides: |
|
analysis = analyze_image(model, tokenizer, slide_image, prompt) |
|
analyses.append((slide_title, analysis)) |
|
|
|
|
|
result = "" |
|
for slide_title, analysis in analyses: |
|
result += f"## {slide_title}\n\n{analysis}\n\n---\n\n" |
|
|
|
return result |
|
|
|
except Exception as e: |
|
import traceback |
|
error_msg = f"Error analyzing slides: {str(e)}\n{traceback.format_exc()}" |
|
return error_msg |
|
|
|
|
|
def main(): |
|
|
|
model, tokenizer = load_model() |
|
|
|
if model is None: |
|
|
|
demo = gr.Interface( |
|
fn=lambda x: "Model loading failed. Please check the logs for details.", |
|
inputs=gr.Textbox(), |
|
outputs=gr.Textbox(), |
|
title="InternVL2.5 Slide Analyzer - Error", |
|
description="The model failed to load. Please check the logs for more information." |
|
) |
|
return demo |
|
|
|
|
|
with gr.Blocks(title="InternVL2.5 PDF Slide Analyzer") as demo: |
|
gr.Markdown("# InternVL2.5 PDF Slide Analyzer") |
|
gr.Markdown("Upload a PDF file and analyze multiple slides") |
|
|
|
|
|
slide_prompts = [ |
|
"Analyze this slide and describe its contents.", |
|
"What is the main message of this slide?", |
|
"Extract all the text visible in this slide.", |
|
"What are the key points presented in this slide?", |
|
"Describe the visual elements and layout of this slide." |
|
] |
|
|
|
with gr.Row(): |
|
file_input = gr.File(label="Upload PDF") |
|
slide_prompt = gr.Dropdown( |
|
choices=slide_prompts, |
|
value=slide_prompts[0], |
|
label="Select a prompt", |
|
allow_custom_value=True |
|
) |
|
|
|
num_slides = gr.Slider( |
|
minimum=1, |
|
maximum=5, |
|
value=2, |
|
step=1, |
|
label="Number of Slides to Analyze" |
|
) |
|
|
|
slides_analyze_btn = gr.Button("Analyze Slides") |
|
slides_output = gr.Markdown(label="Analysis Results") |
|
|
|
|
|
slides_analyze_btn.click( |
|
fn=lambda file, prompt, num: analyze_pdf_slides(model, tokenizer, file, prompt, num), |
|
inputs=[file_input, slide_prompt, num_slides], |
|
outputs=slides_output |
|
) |
|
|
|
|
|
if os.path.exists("example_slides/test_slides.pdf"): |
|
gr.Examples( |
|
examples=[ |
|
["example_slides/test_slides.pdf", "Extract all the text visible in this slide.", 2] |
|
], |
|
inputs=[file_input, slide_prompt, num_slides] |
|
) |
|
|
|
return demo |
|
|
|
|
|
if __name__ == "__main__": |
|
try: |
|
|
|
demo = main() |
|
demo.launch(server_name="0.0.0.0") |
|
except Exception as e: |
|
print(f"Error starting the application: {e}") |
|
import traceback |
|
traceback.print_exc() |