Spaces:
Runtime error
Runtime error
import os | |
import sys | |
import math | |
import numpy as np | |
import torch | |
import torchvision.transforms as T | |
from torchvision.transforms.functional import InterpolationMode | |
from PIL import Image | |
import gradio as gr | |
from transformers import AutoModel, AutoTokenizer | |
# Enhanced debug printing | |
import logging | |
import traceback | |
# Configure logging | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', | |
handlers=[logging.StreamHandler()] | |
) | |
logger = logging.getLogger("InternVL2.5-Debug") | |
# Print environment info | |
logger.info("Python version: %s", sys.version) | |
logger.info("PyTorch version: %s", torch.__version__) | |
logger.info("Transformers version: %s", __import__("transformers").__version__) | |
try: | |
logger.info("Einops version: %s", __import__("einops").__version__) | |
except ImportError: | |
logger.error("Einops is not installed!") | |
# Constants | |
IMAGENET_MEAN = (0.485, 0.456, 0.406) | |
IMAGENET_STD = (0.229, 0.224, 0.225) | |
# Configuration | |
MODEL_NAME = "OpenGVLab/InternVL2_5-8B" # Smaller model for faster loading | |
IMAGE_SIZE = 448 | |
# Set up environment variables | |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128" | |
# Utility functions for image processing | |
def build_transform(input_size): | |
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD | |
transform = T.Compose([ | |
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), | |
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), | |
T.ToTensor(), | |
T.Normalize(mean=MEAN, std=STD) | |
]) | |
return transform | |
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): | |
best_ratio_diff = float('inf') | |
best_ratio = (1, 1) | |
area = width * height | |
for ratio in target_ratios: | |
target_aspect_ratio = ratio[0] / ratio[1] | |
ratio_diff = abs(aspect_ratio - target_aspect_ratio) | |
if ratio_diff < best_ratio_diff: | |
best_ratio_diff = ratio_diff | |
best_ratio = ratio | |
elif ratio_diff == best_ratio_diff: | |
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: | |
best_ratio = ratio | |
return best_ratio | |
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): | |
orig_width, orig_height = image.size | |
aspect_ratio = orig_width / orig_height | |
# calculate the existing image aspect ratio | |
target_ratios = set( | |
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if | |
i * j <= max_num and i * j >= min_num) | |
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | |
# find the closest aspect ratio to the target | |
target_aspect_ratio = find_closest_aspect_ratio( | |
aspect_ratio, target_ratios, orig_width, orig_height, image_size) | |
# calculate the target width and height | |
target_width = image_size * target_aspect_ratio[0] | |
target_height = image_size * target_aspect_ratio[1] | |
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] | |
# resize the image | |
resized_img = image.resize((target_width, target_height)) | |
processed_images = [] | |
for i in range(blocks): | |
box = ( | |
(i % (target_width // image_size)) * image_size, | |
(i // (target_width // image_size)) * image_size, | |
((i % (target_width // image_size)) + 1) * image_size, | |
((i // (target_width // image_size)) + 1) * image_size | |
) | |
# split the image | |
split_img = resized_img.crop(box) | |
processed_images.append(split_img) | |
assert len(processed_images) == blocks | |
if use_thumbnail and len(processed_images) != 1: | |
thumbnail_img = image.resize((image_size, image_size)) | |
processed_images.append(thumbnail_img) | |
return processed_images | |
# Load and preprocess image for the model - following the official documentation pattern | |
def load_image(image_pil, max_num=12): | |
# Process the image using dynamic_preprocess | |
processed_images = dynamic_preprocess(image_pil, image_size=IMAGE_SIZE, max_num=max_num) | |
# Convert PIL images to tensor format expected by the model | |
transform = build_transform(IMAGE_SIZE) | |
pixel_values = [transform(img) for img in processed_images] | |
pixel_values = torch.stack(pixel_values) | |
# Convert to appropriate data type | |
if torch.cuda.is_available(): | |
pixel_values = pixel_values.cuda().to(torch.bfloat16) | |
else: | |
pixel_values = pixel_values.to(torch.float32) | |
return pixel_values | |
# Function to split model across GPUs | |
def split_model(model_name): | |
device_map = {} | |
world_size = torch.cuda.device_count() | |
if world_size <= 1: | |
return "auto" | |
num_layers = { | |
'InternVL2_5-1B': 24, | |
'InternVL2_5-2B': 24, | |
'InternVL2_5-4B': 36, | |
'InternVL2_5-8B': 32, | |
'InternVL2_5-26B': 48, | |
'InternVL2_5-38B': 64, | |
'InternVL2_5-78B': 80 | |
}[model_name] | |
# Since the first GPU will be used for ViT, treat it as half a GPU. | |
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5)) | |
num_layers_per_gpu = [num_layers_per_gpu] * world_size | |
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5) | |
layer_cnt = 0 | |
for i, num_layer in enumerate(num_layers_per_gpu): | |
for j in range(num_layer): | |
device_map[f'language_model.model.layers.{layer_cnt}'] = i | |
layer_cnt += 1 | |
device_map['vision_model'] = 0 | |
device_map['mlp1'] = 0 | |
device_map['language_model.model.tok_embeddings'] = 0 | |
device_map['language_model.model.embed_tokens'] = 0 | |
device_map['language_model.model.rotary_emb'] = 0 | |
device_map['language_model.output'] = 0 | |
device_map['language_model.model.norm'] = 0 | |
device_map['language_model.lm_head'] = 0 | |
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0 | |
return device_map | |
# Get model dtype | |
def get_model_dtype(): | |
return torch.bfloat16 if torch.cuda.is_available() else torch.float32 | |
# Model loading function | |
def load_model(): | |
print(f"\n=== Loading {MODEL_NAME} ===") | |
print(f"CUDA available: {torch.cuda.is_available()}") | |
model_dtype = get_model_dtype() | |
print(f"Using model dtype: {model_dtype}") | |
if torch.cuda.is_available(): | |
print(f"GPU count: {torch.cuda.device_count()}") | |
for i in range(torch.cuda.device_count()): | |
print(f"GPU {i}: {torch.cuda.get_device_name(i)}") | |
# Memory info | |
print(f"Total GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.2f} GB") | |
print(f"Allocated GPU memory: {torch.cuda.memory_allocated() / 1e9:.2f} GB") | |
print(f"Reserved GPU memory: {torch.cuda.memory_reserved() / 1e9:.2f} GB") | |
# Determine device map | |
device_map = "auto" | |
if torch.cuda.is_available() and torch.cuda.device_count() > 1: | |
model_short_name = MODEL_NAME.split('/')[-1] | |
device_map = split_model(model_short_name) | |
# Load model and tokenizer | |
try: | |
model = AutoModel.from_pretrained( | |
MODEL_NAME, | |
torch_dtype=model_dtype, | |
low_cpu_mem_usage=True, | |
trust_remote_code=True, | |
device_map=device_map | |
) | |
tokenizer = AutoTokenizer.from_pretrained( | |
MODEL_NAME, | |
use_fast=False, | |
trust_remote_code=True | |
) | |
print(f"✓ Model and tokenizer loaded successfully!") | |
return model, tokenizer | |
except Exception as e: | |
logger.error(f"❌ Error loading model: {e}") | |
logger.error("Detailed traceback:") | |
import traceback | |
traceback.print_exc() | |
# Check if einops is available | |
try: | |
import einops | |
logger.info(f"einops is available, version: {einops.__version__}") | |
except ImportError: | |
logger.error("ImportError: einops is not installed! This is required for InternVL2.5.") | |
# Check for CUDA availability | |
if torch.cuda.is_available(): | |
logger.info(f"CUDA is available. Device count: {torch.cuda.device_count()}") | |
for i in range(torch.cuda.device_count()): | |
logger.info(f"Device {i}: {torch.cuda.get_device_name(i)}") | |
logger.info(f"Memory allocated: {torch.cuda.memory_allocated(i) / 1e9:.2f} GB") | |
logger.info(f"Memory reserved: {torch.cuda.memory_reserved(i) / 1e9:.2f} GB") | |
else: | |
logger.warning("CUDA is not available. Running on CPU.") return None, None | |
# Image analysis function using the chat method from documentation | |
def analyze_image(model, tokenizer, image, prompt): | |
try: | |
# Check if image is valid | |
if image is None: | |
return "Please upload an image first." | |
# Process the image following official pattern | |
pixel_values = load_image(image) | |
# Debug info | |
print(f"Image processed: tensor shape {pixel_values.shape}, dtype {pixel_values.dtype}") | |
# Define generation config | |
generation_config = { | |
"max_new_tokens": 512, | |
"do_sample": False | |
} | |
# Use the model.chat method as shown in the official documentation | |
question = f"<image>\n{prompt}" | |
response, _ = model.chat( | |
tokenizer=tokenizer, | |
pixel_values=pixel_values, | |
question=question, | |
generation_config=generation_config, | |
history=None, | |
return_history=True | |
) | |
return response | |
except Exception as e: | |
import traceback | |
error_msg = f"Error analyzing image: {str(e)}\n{traceback.format_exc()}" | |
return error_msg | |
# Main function | |
def main(): | |
# Add debug info at the start of main | |
logger.info("Starting main() function...") | |
logger.info(f"MODEL_NAME: {MODEL_NAME}") | |
# Load the model | |
model, tokenizer = load_model() | |
if model is None: | |
# Create an error interface if model loading failed | |
demo = gr.Interface( | |
fn=lambda x: "Model loading failed. Please check the logs for details.", | |
inputs=gr.Textbox(), | |
outputs=gr.Textbox(), | |
title="InternVL2.5 Image Analyzer - Error", | |
description="The model failed to load. Please check the logs for more information." | |
) | |
return demo | |
# Predefined prompts for analysis | |
prompts = [ | |
"Describe this image in detail.", | |
"What can you tell me about this image?", | |
"Is there any text in this image? If so, can you read it?", | |
"What is the main subject of this image?", | |
"What emotions or feelings does this image convey?", | |
"Describe the composition and visual elements of this image.", | |
"Summarize what you see in this image in one paragraph." | |
] | |
# Create the interface | |
demo = gr.Interface( | |
fn=lambda img, prompt: analyze_image(model, tokenizer, img, prompt), | |
inputs=[ | |
gr.Image(type="pil", label="Upload Image"), | |
gr.Dropdown(choices=prompts, value=prompts[0], label="Select a prompt or write your own below", | |
allow_custom_value=True) | |
], | |
outputs=gr.Textbox(label="Analysis Results", lines=15), | |
title="InternVL2.5 Image Analyzer", | |
description="Upload an image and ask the InternVL2.5 model to analyze it.", | |
examples=[ | |
["example_images/example1.jpg", "Describe this image in detail."], | |
["example_images/example2.jpg", "What can you tell me about this image?"] | |
], | |
theme=gr.themes.Soft(), | |
allow_flagging="never" | |
) | |
return demo | |
# Run the application | |
if __name__ == "__main__": | |
try: | |
# Check for GPU | |
if not torch.cuda.is_available(): | |
print("WARNING: CUDA is not available. The model requires a GPU to function properly.") | |
# Create and launch the interface | |
demo = main() | |
demo.launch(server_name="0.0.0.0") | |
except Exception as e: | |
print(f"Error starting the application: {e}") | |
import traceback | |
traceback.print_exc() | |