Spaces:
Build error
Build error
Add training script for SmolLM2-135M model using Unsloth. Includes model loading, dataset preparation, and training configuration. Provides detailed instructions for setup and execution.
Browse files
train.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
Fine-tuning script for SmolLM2-135M model using Unsloth.
|
4 |
+
|
5 |
+
This script demonstrates how to:
|
6 |
+
1. Install and configure Unsloth
|
7 |
+
2. Prepare and format training data
|
8 |
+
3. Configure and run the training process
|
9 |
+
4. Save and evaluate the model
|
10 |
+
|
11 |
+
To run this script:
|
12 |
+
1. Install dependencies: pip install -r requirements.txt
|
13 |
+
2. Run: python train.py
|
14 |
+
"""
|
15 |
+
|
16 |
+
import os
|
17 |
+
from typing import Union
|
18 |
+
|
19 |
+
from datasets import (
|
20 |
+
Dataset,
|
21 |
+
DatasetDict,
|
22 |
+
IterableDataset,
|
23 |
+
IterableDatasetDict,
|
24 |
+
load_dataset,
|
25 |
+
)
|
26 |
+
from transformers import AutoTokenizer, Trainer, TrainingArguments
|
27 |
+
from trl import SFTTrainer
|
28 |
+
from unsloth import FastLanguageModel, is_bfloat16_supported
|
29 |
+
from unsloth.chat_templates import get_chat_template
|
30 |
+
|
31 |
+
# Configuration
|
32 |
+
max_seq_length = 2048 # Auto supports RoPE Scaling internally
|
33 |
+
dtype = (
|
34 |
+
None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
35 |
+
)
|
36 |
+
load_in_4bit = True # Use 4bit quantization to reduce memory usage
|
37 |
+
|
38 |
+
# def install_dependencies():
|
39 |
+
# """Install required dependencies."""
|
40 |
+
# os.system('pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"')
|
41 |
+
# os.system('pip install --no-deps xformers trl peft accelerate bitsandbytes')
|
42 |
+
|
43 |
+
|
44 |
+
def load_model() -> tuple[FastLanguageModel, AutoTokenizer]:
|
45 |
+
"""Load and configure the model."""
|
46 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
47 |
+
model_name="unsloth/SmolLM2-135M-Instruct-bnb-4bit",
|
48 |
+
max_seq_length=max_seq_length,
|
49 |
+
dtype=dtype,
|
50 |
+
load_in_4bit=load_in_4bit,
|
51 |
+
)
|
52 |
+
|
53 |
+
# Configure LoRA
|
54 |
+
model = FastLanguageModel.get_peft_model(
|
55 |
+
model,
|
56 |
+
r=64,
|
57 |
+
target_modules=[
|
58 |
+
"q_proj",
|
59 |
+
"k_proj",
|
60 |
+
"v_proj",
|
61 |
+
"o_proj",
|
62 |
+
"gate_proj",
|
63 |
+
"up_proj",
|
64 |
+
"down_proj",
|
65 |
+
],
|
66 |
+
lora_alpha=128,
|
67 |
+
lora_dropout=0.05,
|
68 |
+
bias="none",
|
69 |
+
use_gradient_checkpointing="unsloth",
|
70 |
+
random_state=3407,
|
71 |
+
use_rslora=True,
|
72 |
+
loftq_config=None,
|
73 |
+
)
|
74 |
+
|
75 |
+
return model, tokenizer
|
76 |
+
|
77 |
+
|
78 |
+
def load_and_format_dataset(
|
79 |
+
tokenizer: AutoTokenizer,
|
80 |
+
) -> tuple[
|
81 |
+
Union[DatasetDict, Dataset, IterableDatasetDict, IterableDataset], AutoTokenizer
|
82 |
+
]:
|
83 |
+
"""Load and format the training dataset."""
|
84 |
+
# Load the code-act dataset
|
85 |
+
dataset = load_dataset("xingyaoww/code-act", split="codeact")
|
86 |
+
|
87 |
+
# Configure chat template
|
88 |
+
tokenizer = get_chat_template(
|
89 |
+
tokenizer,
|
90 |
+
chat_template="chatml", # Supports zephyr, chatml, mistral, llama, alpaca, vicuna, vicuna_old, unsloth
|
91 |
+
mapping={
|
92 |
+
"role": "from",
|
93 |
+
"content": "value",
|
94 |
+
"user": "human",
|
95 |
+
"assistant": "gpt",
|
96 |
+
}, # ShareGPT style
|
97 |
+
map_eos_token=True, # Maps <|im_end|> to </s> instead
|
98 |
+
)
|
99 |
+
|
100 |
+
def formatting_prompts_func(examples):
|
101 |
+
convos = examples["conversations"]
|
102 |
+
texts = [
|
103 |
+
tokenizer.apply_chat_template(
|
104 |
+
convo, tokenize=False, add_generation_prompt=False
|
105 |
+
)
|
106 |
+
for convo in convos
|
107 |
+
]
|
108 |
+
return {"text": texts}
|
109 |
+
|
110 |
+
# Apply formatting to dataset
|
111 |
+
dataset = dataset.map(formatting_prompts_func, batched=True)
|
112 |
+
|
113 |
+
return dataset, tokenizer
|
114 |
+
|
115 |
+
|
116 |
+
def create_trainer(
|
117 |
+
model: FastLanguageModel,
|
118 |
+
tokenizer: AutoTokenizer,
|
119 |
+
dataset: Union[DatasetDict, Dataset, IterableDatasetDict, IterableDataset],
|
120 |
+
) -> Trainer:
|
121 |
+
"""Create and configure the SFTTrainer."""
|
122 |
+
return SFTTrainer(
|
123 |
+
model=model,
|
124 |
+
tokenizer=tokenizer,
|
125 |
+
train_dataset=dataset,
|
126 |
+
dataset_text_field="text",
|
127 |
+
max_seq_length=max_seq_length,
|
128 |
+
dataset_num_proc=2,
|
129 |
+
packing=False,
|
130 |
+
args=TrainingArguments(
|
131 |
+
per_device_train_batch_size=2,
|
132 |
+
gradient_accumulation_steps=16,
|
133 |
+
warmup_steps=100,
|
134 |
+
max_steps=120,
|
135 |
+
learning_rate=5e-5,
|
136 |
+
fp16=not is_bfloat16_supported(),
|
137 |
+
bf16=is_bfloat16_supported(),
|
138 |
+
logging_steps=1,
|
139 |
+
optim="adamw_8bit",
|
140 |
+
weight_decay=0.01,
|
141 |
+
lr_scheduler_type="cosine_with_restarts",
|
142 |
+
seed=3407,
|
143 |
+
output_dir="outputs",
|
144 |
+
gradient_checkpointing=True,
|
145 |
+
save_strategy="steps",
|
146 |
+
save_steps=30,
|
147 |
+
save_total_limit=2,
|
148 |
+
),
|
149 |
+
)
|
150 |
+
|
151 |
+
|
152 |
+
def main():
|
153 |
+
"""Main training function."""
|
154 |
+
# Install dependencies
|
155 |
+
# install_dependencies()
|
156 |
+
|
157 |
+
# Load model and tokenizer
|
158 |
+
model, tokenizer = load_model()
|
159 |
+
|
160 |
+
# Load and prepare dataset
|
161 |
+
dataset, tokenizer = load_and_format_dataset(tokenizer)
|
162 |
+
|
163 |
+
# Create trainer
|
164 |
+
trainer: Trainer = create_trainer(model, tokenizer, dataset)
|
165 |
+
|
166 |
+
# Train
|
167 |
+
trainer.train()
|
168 |
+
|
169 |
+
# Save model
|
170 |
+
trainer.save_model("final_model")
|
171 |
+
|
172 |
+
|
173 |
+
if __name__ == "__main__":
|
174 |
+
main()
|