mjschock's picture
Refactor train.py to improve code readability and organization. Adjust logging setup for clarity, streamline dependency installation commands, and enhance dataset splitting and formatting processes. Ensure consistent formatting in log messages and code structure.
9a87cb8 unverified
raw
history blame
8.78 kB
#!/usr/bin/env python3
"""
Fine-tuning script for SmolLM2-135M model using Unsloth.
This script demonstrates how to:
1. Install and configure Unsloth
2. Prepare and format training data
3. Configure and run the training process
4. Save and evaluate the model
To run this script:
1. Install dependencies: pip install -r requirements.txt
2. Run: python train.py
"""
import logging
import os
from datetime import datetime
from pathlib import Path
from typing import Union
from datasets import (
Dataset,
DatasetDict,
IterableDataset,
IterableDatasetDict,
load_dataset,
)
from transformers import AutoTokenizer, Trainer, TrainingArguments
from trl import SFTTrainer
from unsloth import FastLanguageModel, is_bfloat16_supported
from unsloth.chat_templates import get_chat_template
# Configuration
max_seq_length = 2048 # Auto supports RoPE Scaling internally
dtype = (
None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
)
load_in_4bit = True # Use 4bit quantization to reduce memory usage
validation_split = 0.1 # 10% of data for validation
# Setup logging
def setup_logging():
"""Configure logging for the training process."""
# Create logs directory if it doesn't exist
log_dir = Path("logs")
log_dir.mkdir(exist_ok=True)
# Create a unique log file name with timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
log_file = log_dir / f"training_{timestamp}.log"
# Configure logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
handlers=[logging.FileHandler(log_file), logging.StreamHandler()],
)
logger = logging.getLogger(__name__)
logger.info(f"Logging initialized. Log file: {log_file}")
return logger
logger = setup_logging()
def install_dependencies():
"""Install required dependencies."""
logger.info("Installing dependencies...")
try:
os.system(
'pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"'
)
os.system("pip install --no-deps xformers trl peft accelerate bitsandbytes")
logger.info("Dependencies installed successfully")
except Exception as e:
logger.error(f"Error installing dependencies: {e}")
raise
def load_model() -> tuple[FastLanguageModel, AutoTokenizer]:
"""Load and configure the model."""
logger.info("Loading model and tokenizer...")
try:
model, tokenizer = FastLanguageModel.from_pretrained(
model_name="unsloth/SmolLM2-135M-Instruct-bnb-4bit",
max_seq_length=max_seq_length,
dtype=dtype,
load_in_4bit=load_in_4bit,
)
logger.info("Base model loaded successfully")
# Configure LoRA
model = FastLanguageModel.get_peft_model(
model,
r=64,
target_modules=[
"q_proj",
"k_proj",
"v_proj",
"o_proj",
"gate_proj",
"up_proj",
"down_proj",
],
lora_alpha=128,
lora_dropout=0.05,
bias="none",
use_gradient_checkpointing="unsloth",
random_state=3407,
use_rslora=True,
loftq_config=None,
)
logger.info("LoRA configuration applied successfully")
return model, tokenizer
except Exception as e:
logger.error(f"Error loading model: {e}")
raise
def load_and_format_dataset(
tokenizer: AutoTokenizer,
) -> tuple[
Union[DatasetDict, Dataset, IterableDatasetDict, IterableDataset], AutoTokenizer
]:
"""Load and format the training dataset."""
logger.info("Loading and formatting dataset...")
try:
# Load the code-act dataset
dataset = load_dataset("xingyaoww/code-act", split="codeact")
logger.info(f"Dataset loaded successfully. Size: {len(dataset)} examples")
# Split into train and validation sets
dataset = dataset.train_test_split(test_size=validation_split, seed=3407)
logger.info(
f"Dataset split into train ({len(dataset['train'])} examples) and validation ({len(dataset['test'])} examples) sets"
)
# Configure chat template
tokenizer = get_chat_template(
tokenizer,
chat_template="chatml", # Supports zephyr, chatml, mistral, llama, alpaca, vicuna, vicuna_old, unsloth
mapping={
"role": "from",
"content": "value",
"user": "human",
"assistant": "gpt",
}, # ShareGPT style
map_eos_token=True, # Maps <|im_end|> to </s> instead
)
logger.info("Chat template configured successfully")
def formatting_prompts_func(examples):
convos = examples["conversations"]
texts = [
tokenizer.apply_chat_template(
convo, tokenize=False, add_generation_prompt=False
)
for convo in convos
]
return {"text": texts}
# Apply formatting to both train and validation sets
dataset = DatasetDict(
{
"train": dataset["train"].map(formatting_prompts_func, batched=True),
"validation": dataset["test"].map(
formatting_prompts_func, batched=True
),
}
)
logger.info("Dataset formatting completed successfully")
return dataset, tokenizer
except Exception as e:
logger.error(f"Error loading/formatting dataset: {e}")
raise
def create_trainer(
model: FastLanguageModel,
tokenizer: AutoTokenizer,
dataset: Union[DatasetDict, Dataset, IterableDatasetDict, IterableDataset],
) -> Trainer:
"""Create and configure the SFTTrainer."""
logger.info("Creating trainer...")
try:
trainer = SFTTrainer(
model=model,
tokenizer=tokenizer,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"], # Add validation dataset
dataset_text_field="text",
max_seq_length=max_seq_length,
dataset_num_proc=2,
packing=False,
args=TrainingArguments(
per_device_train_batch_size=2,
per_device_eval_batch_size=2, # Add evaluation batch size
gradient_accumulation_steps=16,
warmup_steps=100,
max_steps=120,
learning_rate=5e-5,
fp16=not is_bfloat16_supported(),
bf16=is_bfloat16_supported(),
logging_steps=1,
evaluation_strategy="steps", # Add evaluation strategy
eval_steps=10, # Evaluate every 10 steps
save_strategy="steps",
save_steps=30,
save_total_limit=2,
optim="adamw_8bit",
weight_decay=0.01,
lr_scheduler_type="cosine_with_restarts",
seed=3407,
output_dir="outputs",
gradient_checkpointing=True,
load_best_model_at_end=True, # Load best model at the end
metric_for_best_model="eval_loss", # Use validation loss for model selection
greater_is_better=False, # Lower loss is better
),
)
logger.info("Trainer created successfully")
return trainer
except Exception as e:
logger.error(f"Error creating trainer: {e}")
raise
def main():
"""Main training function."""
try:
logger.info("Starting training process...")
# Install dependencies
install_dependencies()
# Load model and tokenizer
model, tokenizer = load_model()
# Load and prepare dataset
dataset, tokenizer = load_and_format_dataset(tokenizer)
# Create trainer
trainer: Trainer = create_trainer(model, tokenizer, dataset)
# Train
logger.info("Starting training...")
trainer.train()
# Save model
logger.info("Saving final model...")
trainer.save_model("final_model")
# Print final metrics
final_metrics = trainer.state.log_history[-1]
logger.info("\nTraining completed!")
logger.info(f"Final training loss: {final_metrics.get('loss', 'N/A')}")
logger.info(f"Final validation loss: {final_metrics.get('eval_loss', 'N/A')}")
except Exception as e:
logger.error(f"Error in main training process: {e}")
raise
if __name__ == "__main__":
main()