Spaces:
Build error
Build error
File size: 3,879 Bytes
a60b872 a3a55bb a60b872 a3a55bb a60b872 2579190 a60b872 2579190 a3a55bb a60b872 2579190 a60b872 2579190 a60b872 a3a55bb a60b872 2aa9dc2 2579190 2aa9dc2 a60b872 2579190 a60b872 2579190 a60b872 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import logging
import os
import requests
import yaml
from dotenv import find_dotenv, load_dotenv
from litellm._logging import _disable_debugging
from openinference.instrumentation.smolagents import SmolagentsInstrumentor
from phoenix.otel import register
# from smolagents import CodeAgent, LiteLLMModel, LiteLLMRouterModel
from smolagents import CodeAgent, LiteLLMModel
from smolagents.monitoring import LogLevel
from tools.smart_search.tool import SmartSearchTool
from utils import extract_final_answer
_disable_debugging()
# Configure OpenTelemetry with Phoenix
register()
SmolagentsInstrumentor().instrument()
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
load_dotenv(find_dotenv())
API_BASE = os.getenv("API_BASE")
API_KEY = os.getenv("API_KEY")
MODEL_ID = os.getenv("MODEL_ID")
model = LiteLLMModel(
api_base=API_BASE,
api_key=API_KEY,
model_id=MODEL_ID,
)
# data_agent = create_data_agent(model)
# media_agent = create_media_agent(model)
# web_agent = create_web_agent(model)
# search_agent = ToolCallingAgent(
# tools=[DuckDuckGoSearchTool(), VisitWebpageTool()],
# model=model,
# name="search_agent",
# description="This is an agent that can do web search.",
# )
prompt_templates = yaml.safe_load(open("prompts/code_agent_modified.yaml", "r"))
agent = CodeAgent(
# add_base_tools=True,
# additional_authorized_imports=[
# "json",
# "pandas",
# "numpy",
# "re",
# # "requests"
# # "urllib.request",
# ],
# max_steps=10,
# managed_agents=[web_agent, data_agent, media_agent],
# managed_agents=[search_agent],
model=model,
prompt_templates=prompt_templates,
tools=[
SmartSearchTool(),
# VisitWebpageTool(max_output_length=1024),
],
step_callbacks=None,
verbosity_level=LogLevel.ERROR,
)
agent.visualize()
def main(task: str):
# Format the task with GAIA-style instructions
# gaia_task = f"""Instructions:
# 1. Your response must contain ONLY the answer to the question, nothing else
# 2. Do not repeat the question or any part of it
# 3. Do not include any explanations, reasoning, or context
# 4. Do not include source attribution or references
# 5. Do not use phrases like "The answer is" or "I found that"
# 6. Do not include any formatting, bullet points, or line breaks
# 7. If the answer is a number, return only the number
# 8. If the answer requires multiple items, separate them with commas
# 9. If the answer requires ordering, maintain the specified order
# 10. Use the most direct and succinct form possible
# {task}"""
result = agent.run(
additional_args=None,
images=None,
max_steps=3,
reset=True,
stream=False,
task=task,
# task=gaia_task,
)
logger.info(f"Result: {result}")
return extract_final_answer(result)
if __name__ == "__main__":
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
for question_data in questions_data[:1]:
file_name = question_data["file_name"]
level = question_data["Level"]
question = question_data["question"]
task_id = question_data["task_id"]
logger.info(f"Question: {question}")
# logger.info(f"Level: {level}")
if file_name:
logger.info(f"File Name: {file_name}")
# logger.info(f"Task ID: {task_id}")
final_answer = main(question)
logger.info(f"Final Answer: {final_answer}")
logger.info("--------------------------------")
|