Spaces:
Sleeping
Sleeping
import torch | |
from PIL import Image | |
def predict_single_image(model, image_path, transform, class_idx_to_name, device): | |
""" | |
Predict the class of a single image. | |
Args: | |
model: Trained model | |
image_path (str): Path to the image | |
transform: Transformations to apply | |
class_idx_to_name (dict): Mapping from class index to class name | |
device: torch.device | |
""" | |
model.eval() | |
img = Image.open(image_path).convert("RGB") | |
img = transform(img).unsqueeze(0) # Add batch dimension | |
img = img.to(device) | |
with torch.no_grad(): | |
output = model(img) | |
_, pred = torch.max(output, 1) | |
predicted_class = class_idx_to_name[pred.item()] | |
return predicted_class |