File size: 1,601 Bytes
2086b03
5ee3b23
2086b03
 
 
5ee3b23
2086b03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ee3b23
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
title: 'CropGuard: Leaf Disease Detector'
colorFrom: green
colorTo: indigo
sdk: gradio
sdk_version: 5.27.1
app_file: app.py
pinned: false
---

# CropGuard: Leaf Disease Detector

**CropGuard** is a lightweight, deployable machine learning app that detects **leaf diseases** in **Potato**, **Tomato**, and **Grape** plants from user-uploaded or captured images.

Built using **PyTorch**, **Gradio**, **Docker**, and **Hugging Face Spaces**, it provides the following capabilities:

- Upload or capture a leaf image
- Predict plant health status
- Identify likely disease (if any)
- Visualize model attention using **GradCAM++** heatmaps
- Provide quick disease information and treatment suggestions

---

## Project Structure

```
CropGuard/
β”œβ”€β”€ app.py                # Gradio app
β”œβ”€β”€ Dockerfile            # Docker container definition
β”œβ”€β”€ requirements.txt      # Python dependencies
β”œβ”€β”€ src/                  # Source code (organized into modules)
β”‚   β”œβ”€β”€ app/
β”‚   β”œβ”€β”€ data/
β”‚   β”œβ”€β”€ model/
β”‚   └── utils/
β”œβ”€β”€ sample_images/        # Few test images (optional for demo)
β”œβ”€β”€ disease_info.json     # Disease descriptions
└── README.md             # (this file)
```

## License

MIT License.

---

## Acknowledgments

- **Dataset:** [PlantVillage Dataset](https://www.kaggle.com/datasets/mohitsingh1804/plantvillage)
- **Base Model:** [MobileNetV2 (pretrained on ImageNet)](https://arxiv.org/abs/1801.04381)
- **Visualization:** GradCAM++

---

## Author

Made by **[Arka Mitra](https://github.com/mitraarka27)** Β© 2025.

---