mipra commited on
Commit
8ef853b
Β·
1 Parent(s): c3c5676

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -5
app.py CHANGED
@@ -1,6 +1,7 @@
1
  import gradio as gr
2
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
3
  import requests
 
4
 
5
 
6
 
@@ -17,10 +18,11 @@ def translate(hin_snippet):
17
 
18
 
19
  translated = tokenizer.decode(outputs[0]).replace('<pad>',"").strip().lower()
20
- r = requests.post(url='https://hf.space/embed/multimodalart/latentdiffusion/+/api/predict/',
21
- json={"data":[translated,50,32,32,4,15.0]})
22
- print(r.json())
23
- return r.json()
 
24
 
25
 
26
  tokenizer = AutoTokenizer.from_pretrained("salesken/translation-hi-en")
@@ -32,5 +34,5 @@ model = AutoModelForSeq2SeqLM.from_pretrained("salesken/translation-hi-en")
32
  # due to covid, we have reduced our debt interest
33
 
34
 
35
- iface = gr.Interface(fn=translate, inputs="text",outputs=[image,gr.outputs.Carousel(label="Individual images",components=["image"]),gr.outputs.Textbox(label="Error")], css=css)
36
  iface.launch()
 
1
  import gradio as gr
2
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
3
  import requests
4
+ from diffusers import DiffusionPipeline
5
 
6
 
7
 
 
18
 
19
 
20
  translated = tokenizer.decode(outputs[0]).replace('<pad>',"").strip().lower()
21
+
22
+ model_id = "CompVis/ldm-text2im-large-256"
23
+ ldm = DiffusionPipeline.from_pretrained(model_id)
24
+ images = ldm([translated], num_inference_steps=50, eta=0.3, guidance_scale=6)["sample"]
25
+ return images[0].save(f"out.png")
26
 
27
 
28
  tokenizer = AutoTokenizer.from_pretrained("salesken/translation-hi-en")
 
34
  # due to covid, we have reduced our debt interest
35
 
36
 
37
+ iface = gr.Interface(fn=translate, inputs="text",outputs="image")
38
  iface.launch()