Pringled's picture
Updates
95530b9
raw
history blame
23 kB
import gradio as gr
from datasets import load_dataset
import numpy as np
from model2vec import StaticModel
from reach import Reach
from difflib import ndiff
# Load the model
model = StaticModel.from_pretrained("minishlab/M2V_base_output")
# Default parameters
default_dataset_name = "sst2"
default_dataset_split = "train"
default_text_column = "sentence"
default_threshold = 0.9
def batch_iterable(iterable, batch_size):
"""Yield successive batches from an iterable."""
for i in range(0, len(iterable), batch_size):
yield iterable[i:i + batch_size]
def compute_embeddings(texts, batch_size, progress, desc):
"""Compute embeddings for a list of texts with progress tracking."""
embeddings = []
total_batches = (len(texts) + batch_size - 1) // batch_size
for i, batch_texts in enumerate(batch_iterable(texts, batch_size)):
embeddings.append(model.encode(batch_texts, show_progressbar=False))
progress((i + 1) / total_batches, desc=desc)
return np.concatenate(embeddings, axis=0)
def deduplicate_embeddings(
embeddings_a: np.ndarray,
embeddings_b: np.ndarray = None,
threshold: float = 0.9,
batch_size: int = 1024,
progress=None
):
"""Deduplicate within one dataset or across two datasets."""
if embeddings_b is None:
reach = Reach(vectors=embeddings_a, items=[str(i) for i in range(len(embeddings_a))])
duplicate_to_original = {}
results = reach.nearest_neighbor_threshold(
embeddings_a, threshold=threshold, batch_size=batch_size, show_progressbar=False
)
for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=len(embeddings_a))):
for sim_idx, _ in similar_items:
sim_idx = int(sim_idx)
if sim_idx != i and sim_idx not in duplicate_to_original:
duplicate_to_original[sim_idx] = i
deduplicated_indices = set(range(len(embeddings_a))) - set(duplicate_to_original.keys())
return deduplicated_indices, duplicate_to_original
else:
reach = Reach(vectors=embeddings_a, items=[str(i) for i in range(len(embeddings_a))])
duplicate_indices_in_b = []
duplicate_to_original = {}
results = reach.nearest_neighbor_threshold(
embeddings_b, threshold=threshold, batch_size=batch_size, show_progressbar=False
)
for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=len(embeddings_b))):
if similar_items:
duplicate_indices_in_b.append(i)
duplicate_to_original[i] = int(similar_items[0][0])
return duplicate_indices_in_b, duplicate_to_original
def display_word_differences(x: str, y: str) -> str:
"""Display differences between two texts."""
diff = ndiff(x.split(), y.split())
return " ".join(word for word in diff if word.startswith(("+", "-")))
def load_dataset_texts(dataset_name, dataset_split, text_column):
"""Load texts from a specified dataset."""
ds = load_dataset(dataset_name, split=dataset_split)
return [example[text_column] for example in ds]
def perform_deduplication(
deduplication_type,
dataset1_name,
dataset1_split,
dataset1_text_column,
dataset2_name="",
dataset2_split="",
dataset2_text_column="",
threshold=default_threshold,
progress=gr.Progress(track_tqdm=True),
):
try:
threshold = float(threshold)
# Load and process Dataset 1
yield "Loading Dataset 1...", ""
texts1 = load_dataset_texts(dataset1_name, dataset1_split, dataset1_text_column)
yield "Computing embeddings for Dataset 1...", ""
embeddings1 = compute_embeddings(texts1, batch_size=64, progress=progress, desc="Dataset 1 embeddings")
if deduplication_type == "Single dataset":
# Deduplicate within Dataset 1
yield "Deduplicating within Dataset 1...", ""
deduplicated_indices, duplicate_mapping = deduplicate_embeddings(
embeddings1, threshold=threshold, progress=progress
)
num_duplicates = len(duplicate_mapping)
result_text = (
f"**Total documents:** {len(texts1)}\n"
f"**Duplicates found:** {num_duplicates}\n"
f"**Unique documents after deduplication:** {len(deduplicated_indices)}\n\n"
)
if num_duplicates > 0:
result_text += "**Sample duplicates:**\n\n"
for dup_idx, orig_idx in list(duplicate_mapping.items())[:5]:
orig_text = texts1[orig_idx]
dup_text = texts1[dup_idx]
differences = display_word_differences(orig_text, dup_text)
result_text += (
f"**Original:**\n{orig_text}\n\n"
f"**Duplicate:**\n{dup_text}\n\n"
f"**Differences:**\n{differences}\n"
+ "-" * 50 + "\n\n"
)
else:
result_text += "No duplicates found."
yield "Deduplication completed.", result_text
else:
# Load and process Dataset 2
yield "Loading Dataset 2...", ""
texts2 = load_dataset_texts(dataset2_name, dataset2_split, dataset2_text_column)
yield "Computing embeddings for Dataset 2...", ""
embeddings2 = compute_embeddings(texts2, batch_size=64, progress=progress, desc="Dataset 2 embeddings")
# Deduplicate Dataset 2 against Dataset 1
yield "Deduplicating Dataset 2 against Dataset 1...", ""
duplicate_indices, duplicate_mapping = deduplicate_embeddings(
embeddings1, embeddings_b=embeddings2, threshold=threshold, progress=progress
)
num_duplicates = len(duplicate_indices)
result_text = (
f"**Total documents in {dataset2_name}/{dataset2_split}:** {len(texts2)}\n"
f"**Duplicates found in Dataset 2:** {num_duplicates}\n"
f"**Unique documents after deduplication:** {len(texts2) - num_duplicates}\n\n"
)
if num_duplicates > 0:
result_text += "**Sample duplicates from Dataset 2:**\n\n"
for idx in duplicate_indices[:5]:
orig_text = texts1[duplicate_mapping[idx]]
dup_text = texts2[idx]
differences = display_word_differences(orig_text, dup_text)
result_text += (
f"**Original (Dataset 1):**\n{orig_text}\n\n"
f"**Duplicate (Dataset 2):**\n{dup_text}\n\n"
f"**Differences:**\n{differences}\n"
+ "-" * 50 + "\n\n"
)
else:
result_text += "No duplicates found."
yield "Deduplication completed.", result_text
except Exception as e:
yield f"An error occurred: {e}", ""
raise e
with gr.Blocks(css="#status_output { height: 150px; overflow: auto; }") as demo:
gr.Markdown("# Semantic Deduplication")
deduplication_type = gr.Radio(
choices=["Single dataset", "Cross-dataset"],
label="Deduplication Type",
value="Single dataset",
)
with gr.Row():
dataset1_name = gr.Textbox(value=default_dataset_name, label="Dataset 1 Name")
dataset1_split = gr.Textbox(value=default_dataset_split, label="Dataset 1 Split")
dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
dataset2_inputs = gr.Column(visible=False)
with dataset2_inputs:
gr.Markdown("### Dataset 2")
with gr.Row():
dataset2_name = gr.Textbox(value=default_dataset_name, label="Dataset 2 Name")
dataset2_split = gr.Textbox(value=default_dataset_split, label="Dataset 2 Split")
dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
threshold = gr.Slider(0.0, 1.0, value=default_threshold, label="Similarity Threshold")
compute_button = gr.Button("Compute")
status_output = gr.Markdown(elem_id="status_output")
result_output = gr.Markdown()
def update_visibility(choice):
return gr.update(visible=choice == "Cross-dataset")
deduplication_type.change(update_visibility, inputs=deduplication_type, outputs=dataset2_inputs)
compute_button.click(
fn=perform_deduplication,
inputs=[
deduplication_type,
dataset1_name,
dataset1_split,
dataset1_text_column,
dataset2_name,
dataset2_split,
dataset2_text_column,
threshold,
],
outputs=[status_output, result_output],
)
demo.launch()
# import gradio as gr
# from datasets import load_dataset
# import numpy as np
# from model2vec import StaticModel
# from reach import Reach
# from difflib import ndiff
# # Load the model at startup
# model = StaticModel.from_pretrained("minishlab/M2V_base_output")
# # Default dataset parameters
# default_dataset1_name = "sst2"
# default_dataset1_split = "train"
# default_dataset2_name = "sst2"
# default_dataset2_split = "validation"
# default_text_column = "sentence"
# default_threshold = 0.9
# # Load the default datasets at startup
# ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
# ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)
# def batch_iterable(iterable, batch_size):
# """Helper function to create batches from an iterable."""
# for i in range(0, len(iterable), batch_size):
# yield iterable[i:i + batch_size]
# def compute_embeddings(texts, batch_size, progress, desc="Computing embeddings"):
# embeddings = []
# total_batches = (len(texts) + batch_size - 1) // batch_size
# for i, batch_texts in enumerate(batch_iterable(texts, batch_size)):
# batch_embeddings = model.encode(batch_texts, show_progressbar=False)
# embeddings.append(batch_embeddings)
# progress((i + 1) / total_batches, desc=desc)
# return np.concatenate(embeddings, axis=0)
# def deduplicate(
# embedding_matrix: np.ndarray,
# threshold: float,
# batch_size: int = 1024,
# progress=None
# ) -> tuple[np.ndarray, dict[int, int]]:
# # Building the index
# progress(0, desc="Building search index...")
# reach = Reach(
# vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))]
# )
# deduplicated_indices = set(range(len(embedding_matrix)))
# duplicate_to_original_mapping = {}
# # Finding nearest neighbors
# progress(0, desc="Finding nearest neighbors...")
# results = reach.nearest_neighbor_threshold(
# embedding_matrix,
# threshold=threshold,
# batch_size=batch_size,
# show_progressbar=False, # Disable internal progress bar
# )
# # Processing duplicates with a progress bar
# total_items = len(embedding_matrix)
# for i, similar_items in enumerate(
# progress.tqdm(results, desc="Processing duplicates", total=total_items)
# ):
# if i not in deduplicated_indices:
# continue
# similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
# for sim_idx in similar_indices:
# if sim_idx in deduplicated_indices:
# deduplicated_indices.remove(sim_idx)
# duplicate_to_original_mapping[sim_idx] = i
# return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
# def display_word_differences(x: str, y: str) -> str:
# diff = ndiff(x.split(), y.split())
# return " ".join([word for word in diff if word.startswith(("+", "-"))])
# def perform_deduplication(
# deduplication_type,
# dataset1_name,
# dataset1_split,
# dataset1_text_column,
# dataset2_name="",
# dataset2_split="",
# dataset2_text_column="",
# threshold=default_threshold,
# progress=gr.Progress(track_tqdm=True),
# ):
# try:
# # Convert threshold to float
# threshold = float(threshold)
# # Initialize status message
# status = ""
# if deduplication_type == "Single dataset":
# # Load Dataset 1
# status = "Loading Dataset 1..."
# yield status, ""
# if (
# dataset1_name == default_dataset1_name
# and dataset1_split == default_dataset1_split
# ):
# ds = ds_default1
# else:
# ds = load_dataset(dataset1_name, split=dataset1_split)
# # Extract texts
# status = "Extracting texts from Dataset 1..."
# yield status, ""
# texts = [example[dataset1_text_column] for example in ds]
# # Compute embeddings
# status = "Computing embeddings for Dataset 1..."
# yield status, ""
# embedding_matrix = compute_embeddings(
# texts,
# batch_size=64,
# progress=progress,
# desc="Computing embeddings for Dataset 1",
# )
# # Deduplicate
# status = "Deduplicating embeddings..."
# yield status, ""
# deduplicated_indices, duplicate_to_original_mapping = deduplicate(
# embedding_matrix, threshold, progress=progress
# )
# # Prepare the results
# num_duplicates = len(duplicate_to_original_mapping)
# num_total = len(texts)
# num_deduplicated = len(deduplicated_indices)
# result_text = f"**Total documents:** {num_total}\n"
# result_text += f"**Number of duplicates found:** {num_duplicates}\n"
# result_text += (
# f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
# )
# # Show deduplicated examples
# if num_duplicates > 0:
# result_text += "**Examples of duplicates found:**\n\n"
# num_examples = min(5, num_duplicates)
# for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
# original_text = texts[original_idx]
# duplicate_text = texts[duplicate_idx]
# differences = display_word_differences(original_text, duplicate_text)
# result_text += f"**Original text:**\n{original_text}\n\n"
# result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
# result_text += f"**Differences:**\n{differences}\n"
# result_text += "-" * 50 + "\n\n"
# else:
# result_text += "No duplicates found."
# # Final status
# status = "Deduplication completed."
# yield status, result_text
# elif deduplication_type == "Cross-dataset":
# # Similar code for cross-dataset deduplication
# # Load Dataset 1
# status = "Loading Dataset 1..."
# yield status, ""
# if (
# dataset1_name == default_dataset1_name
# and dataset1_split == default_dataset1_split
# ):
# ds1 = ds_default1
# else:
# ds1 = load_dataset(dataset1_name, split=dataset1_split)
# # Load Dataset 2
# status = "Loading Dataset 2..."
# yield status, ""
# if (
# dataset2_name == default_dataset2_name
# and dataset2_split == default_dataset2_split
# ):
# ds2 = ds_default2
# else:
# ds2 = load_dataset(dataset2_name, split=dataset2_split)
# # Extract texts from Dataset 1
# status = "Extracting texts from Dataset 1..."
# yield status, ""
# texts1 = [example[dataset1_text_column] for example in ds1]
# # Extract texts from Dataset 2
# status = "Extracting texts from Dataset 2..."
# yield status, ""
# texts2 = [example[dataset2_text_column] for example in ds2]
# # Compute embeddings for Dataset 1
# status = "Computing embeddings for Dataset 1..."
# yield status, ""
# embedding_matrix1 = compute_embeddings(
# texts1,
# batch_size=64,
# progress=progress,
# desc="Computing embeddings for Dataset 1",
# )
# # Compute embeddings for Dataset 2
# status = "Computing embeddings for Dataset 2..."
# yield status, ""
# embedding_matrix2 = compute_embeddings(
# texts2,
# batch_size=64,
# progress=progress,
# desc="Computing embeddings for Dataset 2",
# )
# # Deduplicate across datasets
# status = "Deduplicating embeddings across datasets..."
# yield status, ""
# duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(
# embedding_matrix1, embedding_matrix2, threshold, progress=progress
# )
# num_duplicates = len(duplicate_indices_in_ds2)
# num_total_ds2 = len(texts2)
# num_unique_ds2 = num_total_ds2 - num_duplicates
# result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n"
# result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
# result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
# # Show deduplicated examples
# if num_duplicates > 0:
# result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
# num_examples = min(5, num_duplicates)
# for duplicate_idx in duplicate_indices_in_ds2[:num_examples]:
# original_idx = duplicate_to_original_mapping[duplicate_idx]
# original_text = texts1[original_idx]
# duplicate_text = texts2[duplicate_idx]
# differences = display_word_differences(original_text, duplicate_text)
# result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n"
# result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n"
# result_text += f"**Differences:**\n{differences}\n"
# result_text += "-" * 50 + "\n\n"
# else:
# result_text += "No duplicates found."
# # Final status
# status = "Deduplication completed."
# yield status, result_text
# except Exception as e:
# yield f"An error occurred: {e}", ""
# raise e
# def deduplicate_across_datasets(
# embedding_matrix_1: np.ndarray,
# embedding_matrix_2: np.ndarray,
# threshold: float,
# batch_size: int = 1024,
# progress=None
# ) -> tuple[list[int], dict[int, int]]:
# # Building the index from Dataset 1
# progress(0, desc="Building search index from Dataset 1...")
# reach = Reach(
# vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))]
# )
# duplicate_indices_in_test = []
# duplicate_to_original_mapping = {}
# # Finding nearest neighbors between datasets
# progress(0, desc="Finding nearest neighbors between datasets...")
# results = reach.nearest_neighbor_threshold(
# embedding_matrix_2,
# threshold=threshold,
# batch_size=batch_size,
# show_progressbar=False, # Disable internal progress bar
# )
# total_items = len(embedding_matrix_2)
# # Processing duplicates with a progress bar
# for i, similar_items in enumerate(
# progress.tqdm(results, desc="Processing duplicates across datasets", total=total_items)
# ):
# similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
# if similar_indices:
# duplicate_indices_in_test.append(i)
# duplicate_to_original_mapping[i] = similar_indices[0]
# return duplicate_indices_in_test, duplicate_to_original_mapping
# # Adjust the height of the status_output component using custom CSS
# with gr.Blocks(css="#status_output { height: 150px; overflow: auto; }") as demo:
# gr.Markdown("# Semantic Deduplication")
# deduplication_type = gr.Radio(
# choices=["Single dataset", "Cross-dataset"],
# label="Deduplication Type",
# value="Single dataset",
# )
# with gr.Row():
# dataset1_name = gr.Textbox(value=default_dataset1_name, label="Dataset 1 Name")
# dataset1_split = gr.Textbox(value=default_dataset1_split, label="Dataset 1 Split")
# dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
# dataset2_inputs = gr.Column(visible=False)
# with dataset2_inputs:
# gr.Markdown("### Dataset 2")
# with gr.Row():
# dataset2_name = gr.Textbox(value=default_dataset2_name, label="Dataset 2 Name")
# dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split")
# dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
# threshold = gr.Slider(
# minimum=0.0, maximum=1.0, value=default_threshold, label="Similarity Threshold"
# )
# compute_button = gr.Button("Compute")
# # Use 'gr.Markdown' with 'elem_id' and custom CSS to adjust height
# status_output = gr.Markdown(elem_id="status_output")
# result_output = gr.Markdown()
# # Function to update the visibility of dataset2_inputs
# def update_visibility(deduplication_type_value):
# if deduplication_type_value == "Cross-dataset":
# return gr.update(visible=True)
# else:
# return gr.update(visible=False)
# deduplication_type.change(
# update_visibility, inputs=deduplication_type, outputs=dataset2_inputs
# )
# compute_button.click(
# fn=perform_deduplication,
# inputs=[
# deduplication_type,
# dataset1_name,
# dataset1_split,
# dataset1_text_column,
# dataset2_name,
# dataset2_split,
# dataset2_text_column,
# threshold,
# ],
# outputs=[status_output, result_output],
# )
# demo.launch()